• Title/Summary/Keyword: 도플러 속도

Search Result 294, Processing Time 0.02 seconds

Factors Affecting Basilar Artery Pulsatility Index on Transcranial Doppler (뇌혈류 초음파 검사에서 기저동맥 박동지수에 영향을 미치는 인자)

  • Jeong, Ho Tae;Kim, Dae Sik;Kang, Kun Woo;Nam, Yun Teak;Oh, Ji Eun;Cho, Eun Kyung
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.50 no.4
    • /
    • pp.477-483
    • /
    • 2018
  • Transcranial doppler is a non-invasive method that measures the blood flow velocity and the direction of cerebral blood vessels through the doppler principle. The pulsatility index is an index for measuring the transcranial doppler that reflects the distal vascular resistance and is used as an index for the presence and diffusion of cerebral small vessel diseases. The purpose of this study was to evaluate the risk factors affecting the basilar artery pulsatility index in ischemic stroke patients. From January 2014 to May 2015, 422 patients were selected by measuring the transcranial doppler pulsatility index, considering their basilar artery pulsatility index. Univariate analysis was performed using the basilar artery pulsatility index as a dependent variable. Multiple regression analysis was performed considering the factors affecting the pulsatility index as variables. Univariate analysis revealed age, presence of hypertension, presence of diabetes mellitus, presence of hyperlipidemia, and hematocrit (P<0.1) as factors. Multiple regression analysis showed statistically significant results with age (P<0.001), presence of diabetes (P=0.004), and presence of hyperlipidemia (P=0.041). The risk factors affecting the basilar artery pulsatility index of transcranial doppler were age, diabetes, and hyperlipidemia. Further research will be needed to increase the cerebral pulsatility index as a surrogate marker of the elderly, diabetes, and hyperlipidemia.

Reliability and utility of a Dry Test Bench for testing the acoustic output from a ballistic shock wave therapeutic device (탄도형 충격파 치료기의 음향 출력 시험을 위한 Dry Test Bench의 신뢰성 및 유용성)

  • Jeon, Sung Joung;Lee, Min Young;Kwon, Oh Bin;Kim, Jong Min;Choi, Min Joo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.5
    • /
    • pp.589-600
    • /
    • 2022
  • In order to verify the reliability of Dry Test Bench (DTB) used for testing the output energy from ballistic extracorporeal shock wave therapeutic devices, the measurements with DTB were compared with the acoustic energy measured with a Laser Doppler Vibrometer (LDV) for a commercial ballistic ESWT device. It was shown that the mechanical energy detected with DTB had variability maintained within 5 % at the same output power setting and also had a linear correlation (adj. R2 = 0.991) with the acoustic energy measured with the LDV for the entire output power settings. Using the correlation between the two methods and the correlation on the acoustic energy measured in between air and water with the LDV, the DTB measurement can be used to estimate the energy flux density in water with an average error of 7.85 % for the entire output power settings of the ballistic shock wave generator considered in the experiment. DTB provides information limited to the output mechanical energy and therefore it is not suitable for testing the various acoustic output parameters required in IEC61846 and IEC63045. However, DTB that is simple in measurement principles and easy to use is expected for manufacturers and clinical users to monitor the performance of ballistic Extracorporeal Shock Wave Therapy (ESWT) devices.

Early Clinical Experience in Valve Replacement Using On-X Prosthetic Heart Valve (On-X 기계판막을 이용한 판막치환술의 단기성적분석)

  • 김인섭;김우식;신용철;유환국;김병열;정성철
    • Journal of Chest Surgery
    • /
    • v.37 no.9
    • /
    • pp.742-748
    • /
    • 2004
  • The On-X valve was recently introduced. It was the aim of this study to assess the safety and feasibility from the data derived from 28 patients who underwent aortic and/or mitral valve replacement with this prosthesis in National Medical Center. Material and Method: From May 1999 and May 2003, a series of 28 consecutive patients who had been implanted with 32 On-X prosthesis were reviewed, The operative procedure comprised of 12 MVR, 10 AVR and 6 DVR. The study followed the guidelines of AATS/STS. Mean follow-up was 27 months (total 04 patient-years). Result: Early ($\leq$30 days) mortality was 7.44% (2/28) and no late mortality occurred in the study. Total actuarial freedom from mortality at 2 years was 92.86$\pm$4.87% for all cases, 100% for MVR, 90$\pm$9.49% for AVR, and 83.3$\pm$1.52% for DVR. Thromboembolic event occurred in 2 MVR patients and that was the only complication; therefore, the linearized incidence of valve related complications was 3.17%/ patient-years for all cases and 6.5%/patient-years for MVR and the actuarial freedom from valve related complications at 2 years was 84.85$\pm$10.75%. Preoperatively, 24 (85.71%) patients were in NYHA functional class III or IV but postoperatively, 25 (89,29%) patients were in NYHA functional class I or II. The levels of hemoglobin, hematocrit, serum LDH, reticulocyte rate and indirect bilirubin were all within normal range at postoperative 3 month. In mitral position, the peak gradient was 6.1$\pm$1.8 mmHg and the mean gradient was 3.0$\pm$0.6 mmHg and EOA were 2.54$\pm$0.56 $m^2$, 2.39$\pm$0.73 $m^2$, 2.34$\pm$0.55 $m^2$, 2.40$\pm$0.63 $m^2$ at 27 mm, 29 mm, 31 mm, 33 mm respectively. In aortic postion, the peak gradient was 21.1 $\pm$14.12 mmHg and the mean gradient was 12.3$\pm$6.52 mmHg. Conclusion: Since there was no significant difference in the postoperative mortality, valve related complications and echocardiographic hemodynamic data compared to standard bileaflet design and since there was an improvement in the NYHA functional class and normal values of hemolytic indicators, it can be assumed that On-X valve is safe and feasible. However, accumulation of cases and long-term follow-up of this patient group is needed to establish this result.

Application of microwave water surface current meter for measuring agricultural water intake (농업용수 사용량 계측을 위한 전자파 표면유속계의 적용)

  • Baek, Jongseok;Kim, Chiyoung;Lee, Kisung;Kang, Hyunwoong;Song, Jaehyun
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.12
    • /
    • pp.1071-1079
    • /
    • 2020
  • For integrated water management, it is essential to secure basic data such as the amount of agricultural water intake. The river water intake through the intake weir is carried out through the agricultural irrigation canal, and a method for measuring the quantity of water intake is required to suit the characteristics of the measuring points. In this study, the accuracy of the calculated flow data was determined by applying a microwave water surface current meter. The microwave water surface current meter is a method of calculating surface velocity using doppler effect, which is mainly used in high-velocities situations such as flood. Surface velocity is difficult to represent the average velocity of the entire section at low dicharges or high wind speeds, it is considered to be low in continuous utilization throughout the year, and it is necessary to verify whether the measurement using an microwave water surface curren meter is appropriate in agricultural irrigation canal. The data measured with an microwave water surface curren meter were compared with the actual flow data to calculate the intake data in agricultural irrigation canal. In agricultural irrigation canal, the low-level discharge calculated using an microwave water surface current meter at a minimum velocity of about 0.3 m/s and a minimum discharge of about 1.0 m3/s or higher was found to have a high tendency and accuracy compared to the standard discharge, especially when the high discharge was high. Although effective results can be obtained in terms of quantity at low discharge, it is deemed that subsequent studies are needed to calculate the average discharge of the cross section at low discharge, given that the trend of data is unstable. Through this study, it is suggested that it is appropriate to calculate the amount of water intake through the microwave water surface current meter in artificial waterways with a certain discharge or higher, so it is expected to be widely distributed as a method for measuring river water intake.