• Title/Summary/Keyword: 도플러 속도

Search Result 294, Processing Time 0.025 seconds

A Study on A New Two-Dimensional Pulsed Doppler System Using Second-Order Sampling Method. (2차 샘플링을 이용한 새로운 초음파 2차원 펄스 도플러 시스템에 관한 연구)

  • Park, Se-Hyeon;Im, Chun-Seong;Kim, Yeong-Gil
    • Journal of Biomedical Engineering Research
    • /
    • v.10 no.1
    • /
    • pp.33-42
    • /
    • 1989
  • The doppler effect is used for measuring the velocity of the blood flow in artery. Because of the range information, the pulsed doppler system is most commonly used. In this paper, we propose a new two-dimensional(2-D) pulsed Doppler system. Which uses second-order sampling method and serial processing. The proposed system using second-order sampling method eliminates in-phase, quadrature-phase balancing problem at demodulator of quadrature detection method. In addition, the new pulsed 2-D doppler system eliminates balancing problem of channels of 2-D doppler system because of serial processing.

  • PDF

Implementation of a Microwave Doppler Sensor (도플러 효과를 이용한 마이크로파 센서의 구현)

  • Kim, Tae-Jin;Rhee, Young-Chul;Kim, Sun-Hyo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.4 no.2
    • /
    • pp.75-81
    • /
    • 2009
  • In this paper, Microwave doppler radar sensor operated in 10.525GHz is designed by dielectric resonant oscillator. According to doppler effects, a characteristic of Microwave sensor with FMCW was analyzed. The qualities of objects velocity and distance between object and microwave sensor by sensor output frequency difference was measured. As a result of Microwave doppler radar sensor, the prototype sensor is available for indoor burglar alarms and other application through FMCW signal.

  • PDF

Atomization Characteristics of Small LRE-Injector Spray According to Injection Pressure Variation (소형 액체로켓엔진 인젝터 분무의 분사압력 변이에 따른 미립화 특성)

  • Jung, Hun;Kim, Jin-Seok;Kim, Jeong-Soo;Park, Jeong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.125-128
    • /
    • 2008
  • Atomization characteristics of small LRE-injector spray are investigated by using dual-mode phase Doppler anemometry (DPDA). Velocity, size, number density, and volume flux were measured at various injection pressures along the radial distance to make a close inquiry into spatial distribution characteristic of spray droplets. As the injection pressure increases, the velocity, turbulence intensity, number density, and volume flux of spray droplets become higher, whereas the droplet size ($D_{10}$ or $D_{32}$) gets smaller. Also, velocity and volume flux are proportional to Sauter mean diameter (SMD, $D_{32}$).

  • PDF

High Resolution Forward-Looking Collision Avoidance Automotive Radar Using Stepped-Frequency Pulsed-Doppler(SFPD) Technique (계단 주파수 변조된 펄스 도플러 기법을 이용한 고해상도 전방 충돌 회피용 차량 레이다 성능 분석)

  • Woo, Sung-Chul;Kwag, Young-Kil
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.8
    • /
    • pp.784-790
    • /
    • 2009
  • A forward-looking automotive radar typically utilizes the frequency modulated continuous wave(FMCW) or pulsed-Doppler waveform for the Information acquisition of the target range and velocity. In order to obtain the high resolution target information, however, a narrow pulse width and wide bandwidth are inherently required, thus resulting in high peak power and high speed digital converter processing. In this paper, a stepped-frequency pulsed-Doppler(SFPD) waveform algorithm is proposed for high resolution forward looking automotive radar application. The performance of the proposed SFPD waveform technique is analyzed and compared with the conventional FMCW and PD method. Since this technique can be used for the high resolution target imaging with arbitrary range and Doppler resolution, it is expected to be useful In automotive radar target classification for the precision collision avoidance applications in the future.

Distance Sensing of Moving Target with Frequency Control of 2.4 GHz Doppler Radar (2.4 GHz 도플러 레이다의 주파수 조정을 통한 이동체 거리 센싱)

  • Baik, Kyung-Jin;Jang, Byung-Jun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.2
    • /
    • pp.152-159
    • /
    • 2019
  • In general, a Doppler radar can measure only the velocity of a moving target. To measure the distance of a moving target, it is necessary to use a frequency-modulated continuous wave or pulse radar. However, the latter are very complex in terms of both hardware as well as signal processing. Moreover, the requirement of wide bandwidth necessitates the use of millimeter-wave frequency bands of 24 GHz and 77 GHz. Recently, a new kind of Doppler radar using multitone frequency has been studied to sense the distance of moving targets in addition to their speed. In this study, we show that distance sensing of moving targets is possible by adjusting only the frequency of a 2.4 GHz Doppler radar with low cost phase lock loop. In particular, we show that distance can be sensed using only alternating current information without direct current offset information. The proposed technology satisfies the Korean local standard for low power radio equipment for moving target identification in the 2.4 GHz frequency band, and enables multiple long-range sensing and radio-frequency identification applications.

Maximum Likelihood Based Doppler Estimation and Target Detection with Pulse Code Modulated Waveform (ML 기법을 이용한 PCM 파형에서의 표적 탐지 및 도플러 추정)

  • Yang, Eunjung;Lee, Heeyoung;Song, Junho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.12
    • /
    • pp.1275-1283
    • /
    • 2014
  • Characteristics of PCM(Pulse Code Modulation) waveform are suitable for target tracking. Especially in terms of dwell time, it is desirable to detect and track a moving target with the single PCM waveform for a MFR(Multi-Function Radar) which carries out multiple tasks. General PCM waveform processing includes Doppler filter bank caused by the characteristics of ambiguity function, to detect target and estimate Doppler frequency, which induces hardware burden and computational complexity. We propose a ML(Maximum Likelihood) based Doppler estimator for a PCM waveform, which is the closed form suboptimal solution and computationally efficient to estimate Doppler frequency and detect a moving target.

Detection Algorithm for Information on Approach or Deviation of Objects Using CW Doppler Radar and FFT (CW 도플러 레이더와 FFT를 이용한 물체의 접근 이탈 정보 판단 알고리즘)

  • Shin, Hyun-Jun;Han, Byung-Hun;Oh, Chang-Heon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.999-1001
    • /
    • 2015
  • CW Doppler radar is capable of giving the relative velocity of an object using the Doppler effect. When detecting more than an object, frequency domain analysis is needed using CW Doppler radar and FFT. Even though the number of objects and velocities can be obtained within the frequency domain, there is a disadvantage that it is difficult to assess information on approach or deviation of an object. When detecting more than an object using FFT, this study suggests an algorithm for efficiently assessing information about approach or deviation of objects within the frequency domain. The proposed algorithm divides sections into real and imaginary numbers in the frequency domain, and then determines deviation if the total sum of the amplitudes of each frequency is on the left side and approach if the total sum of the amplitudes is on the right side.

  • PDF

Decision Feedback Doppler Adaptive Band-Limit Algorithm for Maximum Doppler frequency Estimation (속도 추정 시 부가 잡음의 영향을 억제하기 위한 결정 궤환 적응형 대역 제한 방법에 대한 연구)

  • 박구현;한상철;류탁기;홍대식;강창언
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.11C
    • /
    • pp.1111-1117
    • /
    • 2003
  • The maximum Doppler frequency, or equivalently, the mobile speed is very useful information to optimize the performance of many wireless communication systems. However, the performance of a maximum Doppler frequency estimator is limited since it requires an estimate of the signal-to-noise ratio (SNR) of the channel environment. In this paper, the improved method for the maximum Doppler frequency estimations based on the decision feedback Doppler adaptive band-limit (DF-DABL) method is proposed. To reduce the effect of additive noise, the proposed algorithm uses a novel Doppler adaptive band-limit (DABL) technique. The distortion due to the additive noise is drastically removed by the proposed DF-DABL method. Especially, the DF-DABL method does not need any other channel information such as SNR.

Target Velocity Estimation Technique Using CPA Analysis at the Moving Receiver (CPA분석을 이용한 기동하는 수신기에서의 표적 속도 추정기법)

  • Lee, Su-Hyoung;Kim, Jeong-Soo;Lee, Kyun-Kyung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.4
    • /
    • pp.336-342
    • /
    • 2009
  • A conventional Closest Point of Approach (CPA) analysis allows a non-maneuvering moving source that is radiating a constant frequency tone to be located using doppler shifted frequency measurements obtained by a stationary receiver. The original frequency, relative speed of the target, time at the CPA, and range from the CPA to the sensor are estimated by the conventional CPA. However, this paper proposes a new CPA analysis that allows the motion parameters of a target to be estimated using the bearing and frequency measurements obtained by a moving receiver that has a constant velocity. The validity of the proposed estimation scheme is confirmed through a performance analysis and simulation study.

Detection of Phase Error Due to the Doppler Effect in Low Earth Orbit Mobile Satellite Communication Network in the Presence of Interference and Rician Fading (간섭과 Rician 페이딩이 존재하는 저궤도 이동 위성 통신망에서 도플러 효과에 따르는 위상 에러의 검출)

  • 조훈주;김영철;강희조
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.7 no.1
    • /
    • pp.71-82
    • /
    • 1996
  • In this paper, the Doppler phase error due to the relative velocity between a satellite and the earth station in communications using a low earth orbit mobile satellite is detected. The performance of BPSK system in the presence of Rician fading with Doppler phase error and interference, noise is compared with that of the system disturbed by Doppler phase error and noise only. The expression of error rate performance of BPSK system is derived as the type of complementary error function. The numerical calculation of the induced equation are performed in terms of satellite-height, orbit-eccentricity, the velocity of the earth, Rician fading parameter, signal to interference rateio (SIR), the ratio of carrier frequency and base band bit rate. The main conclusion that can be drawn from this analysis is that Rician fading channel environment with Doppler phase error and interference effect yields severe performance degradation than Do- ppler phase error and noise effect in satellite communication channel. And using the numerical calculation, we give a quantitative insight how much the satellite communication channel parameters degrade the system performance. Furthermore it is shown that an appropriate transmission power control for the performance enhancement is beneficial to the new satellite communication system planning.

  • PDF