• Title/Summary/Keyword: 도착교통류율

Search Result 3, Processing Time 0.014 seconds

Traffic Signal Control Algorithm for Isolated Intersections Based on Travel Time (독립교차로의 통행시간 기반 신호제어 알고리즘)

  • Jeong, Youngje;Park, Sang Sup;Kim, Youngchan
    • Journal of Korean Society of Transportation
    • /
    • v.30 no.6
    • /
    • pp.71-80
    • /
    • 2012
  • This research suggested a real-time traffic signal control algorithm using individual vehicle travel times on an isolated signal intersection. To collect IDs and passing times from individual vehicles, space-based surveillance systems such as DSRC were adopted. This research developed models to estimate arrival flow rates, delays, and the change rate in delay, by using individual vehicle's travel time data. This real-time signal control algorithm could determine optimal traffic signal timings that minimize intersection delay, based on a linear programming. A micro simulation analysis using CORSIM and RUN TIME EXTENSION verified saturated intersection conditions, and determined the optimal traffic signal timings that minimize intersection delay. In addition, the performance of algorithm varying according to market penetration was examined. In spite of limited results from a specific scenario, this algorithm turned out to be effective as long as the probe rate exceeds 40 percent. Recently, space-based traffic surveillance systems are being installed by various projects, such as Hi-pass, Advanced Transportation Management System (ATMS) and Urban Transportation Information System (UTIS) in Korea. This research has an important significance in that the propose algorithm is a new methodology that accepts the space-based traffic surveillance system in real-time signal operations.

Methodology for Real-time Detection of Changes in Dynamic Traffic Flow Using Turning Point Analysis (Turning Point Analysis를 이용한 실시간 교통량 변화 검지 방법론 개발)

  • KIM, Hyungjoo;JANG, Kitae;KWON, Oh Hoon
    • Journal of Korean Society of Transportation
    • /
    • v.34 no.3
    • /
    • pp.278-290
    • /
    • 2016
  • Maximum traffic flow rate is an important performance measure of operational status in transport networks, and has been considered as a key parameter for transportation operation since a bottleneck in congestion decreases maximum traffic flow rate. Although previous studies for traffic flow analysis have been widely conducted, a detection method for changes in dynamic traffic flow has been still veiled. This paper explores the dynamic traffic flow detection that can be utilized for various traffic operational strategies. Turning point analysis (TPA), as a statistical method, is applied to detect the changes in traffic flow rate. In TPA, Bayesian approach is employed and vehicle arrival is assumed to follow Poisson distribution. To examine the performance of the TPA method, traffic flow data from Jayuro urban expressway were obtained and applied. We propose a novel methodology to detect turning points of dynamic traffic flow in real time using TPA. The results showed that the turning points identified in real-time detected the changes in traffic flow rate. We expect that the proposed methodology has wide application in traffic operation systems such as ramp-metering and variable lane control.

A study on the development of evaluation methodology for pedestrian service quality at the access section of bus stop on median bus lane (대기행렬이론을 이용한 중앙버스정류소 접근구간 보행환경 평가에 관한 연구)

  • Cheon, Seung-Hoon;Lee, Young-Ihn
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.1
    • /
    • pp.15-24
    • /
    • 2008
  • Located in the middle of lanes, the station of a median exclusive bus lane generates pedestrian groups on the green light of a crosswalk and causes pedestrians delays passing the access section. For the purpose of showing these facts, the pedestrian analysis, on which the queuing theory is applied, is presented in this study. The Result is that the pedestrian environment was deteriorated (LOS D) compared to an exciting pedestrian analysis based on 15 minutes of pedestrian volume (LOS A). A pedestrian level of service has been reevaluated based on an arrival rate on the median bus station in order to examine whether the result reflects reality or not. In result, it was similar outcomes to this study.