• Title/Summary/Keyword: 도어 임팩트빔

Search Result 19, Processing Time 0.025 seconds

Strength of Pipe Type Door Impact Beam with Changed Bracket Mounting Method and TRP Application (브라켓 마운팅 방법 변경과 TRP 적용에 따른 강관형 도어 임팩트 빔 강도)

  • Kang, Sungjong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.4
    • /
    • pp.379-385
    • /
    • 2016
  • Door impact beam plays a key role in minimizing the occupant injury within the side impacted vehicle through preventing intrusion of the impacting vehicle. Steel pipe type door impact beam has been widely adopted since it has simple structure and the overall strength is easily determined according to the pipe size. The brackets welded at pipe ends connect the door impact beam and the door panels by spot welds. In this study, first, the effect of pipe thickness, bracket thickness and door mounting stiffness was respectively analyzed. Next, application of the tailor rolled pipe was examined and several alterations of the bracket mounting method were considered. Application of tailor rolled pipes with superior bracket mounting method showed remarkable strength enhancement and weight reduction possibility in comparison with the current door impact beam.

Design Improvement of Composite Door Section Impact Beam by Three-Point Bending Analysis (3점 굽힘 하중 해석을 통한 복합재 도어 임팩트 빔 단면형상 설계개선)

  • Ha, Jung-Chan;Oh, Sung Ha;Baek, In-Seok;Lee, Seok-Soon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.6
    • /
    • pp.80-87
    • /
    • 2020
  • The currently observed trend in car manufacturing is to increase energy-efficiency by producing lighter cars. This study examines the replacement of particular parts, specifically around the impact beam, with material composites 30% lighter than conventional steel currently used. The shape of the impact beam was determined as the trapezoidal cross-sectional area with central reinforcement, using three-point bending analysis. A prototype was fabricated based on the findings of our study and its performance was evaluated by the three-point bending analysis; 2 ply of aramid applied for its displacement. The performance of the final prototype for the door assembly was evaluated using a side-door strength test, which resulted to measured initial strength of 10.5 KN and intermediate strength of 15.6 KN. This research provides a promising solution for better impact beam manufacturing.

Development of Vehicle Door Side Impact Beam with High Tensile Steel using Roll Forming Process (고장력 소재로 롤-포밍 공법에 의한 자동차 도어 사이드 임팩트 빔 개발)

  • Son, Hee-Jin;Kim, Sung-Yuk;Oh, Beom-Seok;Kim, Key-Sun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.6
    • /
    • pp.82-87
    • /
    • 2012
  • The purpose of this study is to produce a side impact beam with high tensile steel using a roll forming process. The door side impact beam plays an important roll in a car because it protects passengers from external crash. The roll forming process is a continuous bending process wherein a long metal sheet is bended as it continuously passes several rolls. The characteristic of this study is that an impact beam is produced by a continuous process using a ultra high strength steel without a hardening heat treatment. A model was determined by analysing plasticity of a cross section shape considering high strength. Design parameters of the impact beam was determined by crash-analysing the model. Workpiece products were manufactured by designing dies for roll forming and setting them up in a following process line. Results of a bending test and a FEM analysis was considered and reviewed.

Experimental Study on Side Impact Characteristics for Automotives Door Module (자동차용 도어 모듈의 측면 충돌특성에 관한 실험적 연구)

  • Jeon, S.J.;Kim, M.H.;Lee, G.B.;Lee, M.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.318-318
    • /
    • 2009
  • The door stiffness is one of the important factors side impact. Generally, the researches have been conducted on the assembled door module. This study is to analysis the side impact characteristics for automotives door module. The impact characteristics have been determined by door module side impact test machine. To determine the initial, intermediate and peak crush resistances use the plot of load versus displacement and obtain the integral of the applied load with respect to the crush distances specified below for each door tested. The initial crush resistance is the average force required to deform the door through the initial 6 inches of crush. The intermediate crush resistance is the average force required to deform the door through the initial 12 inches of crush. The peak crush resistance will be directly obtained from the plot of load versus displacement since it is the largest force required to deform the door through the entire 18 inches crush distance. The data are used to determine if a specific vehicle or item of automotives equipment meets the minimum performance requirements of the subject Federal Motor Vehicle Safety Standard(FMVSS). FMVSS Static 214, Side impact protection, specifies performance requirements for protection of occupants in side impact crashes.

  • PDF

An Experimental Study on the Mechanical Mounting between GFRP Door Impact Beam and Steel Brackets (GFRP 도어 임팩트 빔과 Steel 브래킷의 기계적 결합에 관한 실험적 연구)

  • Ha, Jung-Chan;Shin, Young-cheol;Baek, In-Seok;Lee, Seok-Soon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.5
    • /
    • pp.103-110
    • /
    • 2021
  • The mounting performance of the GFRP(Glass fiber Reinforced Plastic) beam and the mechanical mounting of the steel bracket was studied to be mounted as a GFRP impact beam on the side door of the passenger car. Moreover, an open-hole tensile test was performed to evaluate breakage tendency based on GFRP stacking conditions. Furthermore, the tightening strength of rivets and bolts was compared using the single lap-shear tension test for the GFRP stacking pattern. Additionally, the GFRP beam and bracket mounting features were designed; moreover, the prototype and bracket were assembled. Additionally, the bracket mounting bending test and the door assembly static bending test were performed to verify the stability of the bracket mounting. In the bracket fastening bending test, no breakage occurred in the connection part between the GFRP beam and the bracket, and it showed 67% (24.4 kN) improved performance compared to steel. In the static bending test of the door assembly, the initial average reaction force increased by 25% compared to the steel, and the performance of all FMVSS-214 regulations was satisfied. The replacement of GFRP impact beams resulted in a 30% weight reduction

타이어와 자동차의 미러 이야기

  • Kim, Won-Ha
    • The tire
    • /
    • s.232
    • /
    • pp.22-25
    • /
    • 2007
  • 탈거리의 발달은 급기야 전 세계를 하루 생활권으로 만들었다. 비행기, 기차, 자동차, 선박 같은 교통수단의 발달은 이른바 글로벌시대를 열어 전 세계가 하나의 가족이 되어 가는데 가장 큰 역할을 했고, 특히 자동차는 사람이나 화물을 운송하는 주요 수단으로서 현대인들에게 의식주 못지않게 중요한 필수품이 되었으며, 전 세계적으로 그 수요가 급속히 증가하고 있는 실정이다. 자동차는 시간과 공간을 효율적으로 사용할 수 있게 하는 등 많은 이익을 주는 반면 교통사고 및 교통체증에 의한 인적, 물적, 경제적 손실 등과 같은 많은 사회적 문제들을 유발시키고 있는 것도 사실이다. 일반적으로 교통사고는 인간적, 차량적, 도로적 요인 등 개개별 요인과 이들의 교호작용에 의해서 발생하기 때문에 차량의 안전운행을 위한 대책은 이들 요인들의 종합적인 분석을 통하여 해결할 수 있다. 이에 따라 운전자와 보행자를 동시에 보호할 수 있고, 운행 시 운전자의 편의를 제공할 수 있는 차량안전시스템 및 이를 위한 제어기술, 정보통신기술, ITS기술, 차량동역학기술 및 차체설계기술 등이 개발 되고 있고, 과거 자동차에서는 볼 수 없었던 시트벨트, 에어백, 범퍼, 차체충격흡수장치, 도어 임팩트 빔 등이 개발되어 교통사고 시 피해를 극소화하는데 기여하고 있다.

  • PDF

Set-Based Multi-objective Design Optimization at the Early Phase of Design (The Second Report) : Application to Automotive Side-Door Impact Beams (초기 설계단계에서의 셋 베이스 다목적 설계 최적화(제2보) : 자동차 사이드 도어 임팩트 빔에의 적용)

  • Nahm, Yoon-Eui
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.34 no.3
    • /
    • pp.8-15
    • /
    • 2011
  • The computer-based simulation tools are currently used overwhelmingly to simulate the performance of automotive designs. Then, the search for an optimal solution that satisfies a number of performance requirements usually involves numerous iterations among several simulation tools. Therefore, meta-modeling techniques are becoming widely used to build approximations of computationally expensive computer analysis tools. The set-based approach proposed in the first report of a four-part paper has been a test bed for the innovation of vehicle structure design process in the Structural Design and Fabrication Committee of JSAE(Society of Automotive Engineers of Japan). In the second report, the proposed design approach is illustrated with a side-door impact beam design example using meta-modeling techniques.

Development of an impact test device for Light-weight Automotive Reinforcements (자동차 보강재 경량화을 위한 충격 실험장치 개발)

  • Kim, Ick-Tae;Kang, Hyung-Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.10
    • /
    • pp.5963-5967
    • /
    • 2014
  • Reducing the impact of collisions of cars is a major issue for reducing the injury and death of passengers. According to the statistical data of the Road Traffic Authority, the deaths from side collision accidents caused by the collision of passenger cars is greater than the deaths from head-on collision accidents. To accommodate this, vehicle designers have added a reinforcing material called the impact frame and impact beam on the inside of the door. Many experiments are needed to develop the door impact beam. These reinforcements to develop a collision experiment is essential. Collision experiments are costly and time consuming. This study used a drop Impactor to obtain the impulse and a strain experimental device was developed for this purpose. The economic costs were reduced and the ideal experiment device configuration was determined. A comparison of the experimental results with numerical value analysis revealed $3.5{\tiimes}10-3sec$ strain ranging from $3.49{\tiimes}10-3$ to $3.99{\tiimes}10-3$.

Development Process of Side Impact Beam for Automotive Light-Weighting Door using Sheet Type (자동차 도어 경량화를 위한 판재형 사이드 임팩트 빔 개발 프로세스)

  • Lee, I.C.;Lee, T.K.;Jang, D.H.
    • Transactions of Materials Processing
    • /
    • v.24 no.2
    • /
    • pp.130-137
    • /
    • 2015
  • This paper presents the development process of automotive side door impact beam for passenger cars. Weight reduction while maintaining functional requirements is one of the major goals in the automotive industry. In this study, thin-walled side door beam using quenchable boron steel was designed to reduce the weight of conventional side door tubular one. In order to estimate design for the proposed side door beams, the static side impact protection tests(FMVSS 214) were conducted using the finite element method. Based on the simulation results, geometry modification of the side door beam has been performed via creating new reinforcing ribs. Furthermore, the manufactured frontal impact beam was mounted on the real side door of a passenger car, and then static impact protection test carried out. It is concluded that the presented test results can provide significant contribution to the stiffness of side door impact beams and light-weighting door research.