• Title/Summary/Keyword: 도심 자율 주행

Search Result 35, Processing Time 0.029 seconds

Eco-Speed Control Strategy for Automated Electric Vehicles on Urban Road (도심환경에서의 전기자동차 친환경 자율주행 속도제어 전략)

  • Heo, Seulgi;Jeong, Yonghwan;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.10 no.1
    • /
    • pp.32-37
    • /
    • 2018
  • This paper proposes autonomous speed control strategy for an Electric Vehicle on urban road. SNU campus road is used to reperesent urban road situation. Motor efficiency of driving on campus circulation road can be improved by controlling velocity properly. Given information of campus road, especially slope of road, acceleration is selected from candidate, considering consumed power, human factor and driving time. To apply urban situation, preceding vehicle is also considered. With preceding vehicle, acceleration is defined according to clearance and relative velocity. Acceleration is bounded in normal range. Proposed acceleration control method is activated with proper velocity range for campus circulation road. With acceleration control, motor efficiency becomes better than driving with constant vehicle. To evaluate the performance of proposed acceleration controller, simulation study is conducted via MATLAB.

Vehicle localization in GPS signal unavailability area using weakly coupled IMU and GPS (관성 센서와 GPS 약결합을 통한 GPS 음영지역에서 차량 위치 추정)

  • Kim, Do-Yoon;Park, Hyun-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1942-1943
    • /
    • 2011
  • 차량의 무인화에 대한 관심이 증대하면서 자율 주행 문제의 중요성이 부각되고 있다. 현재 전역적인 차량 위치는 GPS에 도움을 받고 있지만 도심 고층 빌딩 밀집 지역에서 GPS 신호가 불안해지는 멀티 패스 페이딩 현상에 대한 대안 및 터널을 통과할 때 GPS 신호가 단절되는 구간에 대한 대안이 필요하다. 본 연구에서는 MEMS 기반의 관성 센서를 제작하고 이를 이용하여 차량의 주행 모드를 자동으로 판별한 뒤 각 상황에 알맞은 칼만 필터를 설계하여 차량 위치를 파악하는 알고리즘을 제안한다. 제안한 알고리즘은 실제 임베디드 시스템에 이식되어 10Hz로 동작함을 확인하였고 GPS 음영 지역에서 3분 이내에는 GPS 오차 범위 내에서 차량 위치를 파악할 수 있음을 실험을 통해 확인하였다.

  • PDF

Experiments of Urban Autonomous Navigation using Lane Tracking Control with Monocular Vision (도심 자율주행을 위한 비전기반 차선 추종주행 실험)

  • Suh, Seung-Beum;Kang, Yeon-Sik;Roh, Chi-Won;Kang, Sung-Chul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.5
    • /
    • pp.480-487
    • /
    • 2009
  • Autonomous Lane detection with vision is a difficult problem because of various road conditions, such as shadowy road surface, various light conditions, and the signs on the road. In this paper we propose a robust lane detection algorithm to overcome shadowy road problem using a statistical method. The algorithm is applied to the vision-based mobile robot system and the robot followed the lane with the lane following controller. In parallel with the lane following controller, the global position of the robot is estimated by the developed localization method to specify the locations where the lane is discontinued. The results of experiments, done in the region where the GPS measurement is unreliable, show good performance to detect and to follow the lane in complex conditions with shades, water marks, and so on.

Local Path Planning Method based on Autonomy Manager for Autonomous Navigation in Urban Environment (도심환경 자율주행을 위한 자율매니저 기반 경로계획 기법)

  • Lee, Young-Il;Ahn, Seong-Yong;Kim, Chong-Hui
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.719-725
    • /
    • 2013
  • In this paper, we propose a local path planning method based on RANGER algorithm and autonomy manager for autonomous navigation of UGV in urban environment. LPP method is designed to generate the local path in sensing area by using lane and curb of pavement and autonomy manager is designed to make a decision which transit the status of LPP component to a proper status for current navigation environment. A field test is conducted with scenarios in real urban environment in which crossroad, crosswalk and pavement are included and the performance of proposed method is validated.

A Performance Improvement on Navigation Applying Measurement Estimation in Urban Weak Signal Environment (도심에서의 측정치 추정을 적용한 항법성능 향상 연구)

  • Park, Sul Gee;Cho, Deuk Jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.11
    • /
    • pp.2745-2752
    • /
    • 2014
  • In recent years, Transport Demand Management has been conducted for the efficient management of transport. In ITS applications in particular, the prerequisite is accurate and reliable positioning. However, the major problems are satellite signal outage, and multipath. This paper proposes that outage and multipath measurement can be detected and estimated using elevation angle and signal to noise ratio data association relation in stand-alone GPS. In order to verify the performance of the proposed method, it is then evaluated by the car test. the evaluation test environment has low accuracy and unreliable positioning because of signal outage or multipath such as steep hill and high buildings. In the evaluation test result, 918times abnormal signal occurred and it was confirmed that the proposed method showed more improved 9.48m(RMS) horizontal positioning error than without proposed method.

Implementation and Validation of Traffic Light Recognition Algorithm for Low-speed Special Purpose Vehicles in an Urban Autonomous Environment (저속 특장차의 도심 자율주행을 위한 신호등 인지 알고리즘 적용 및 검증)

  • Wonsub, Yun;Jongtak, Kim;Myeonggyu, Lee;Wongun, Kim
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.4
    • /
    • pp.6-15
    • /
    • 2022
  • In this study, a traffic light recognition algorithm was implemented and validated for low-speed special purpose vehicles in an urban environment. Real-time image data using a camera and YOLO algorithm were applied. Two methods were presented to increase the accuracy of the traffic light recognition algorithm, and it was confirmed that the second method had the higher accuracy according to the traffic light type. In addition, it was confirmed that the optimal YOLO algorithm was YOLO v5m, which has over 98% mAP values and higher efficiency. In the future, it is thought that the traffic light recognition algorithm can be used as a dual system to secure the platform safety in the traffic information error of C-ITS.

A VR-Based Integrated Simulation for the Remote Operation Technology Development of Unmanned-Vehicles in PRT System (자동 운전 PRT 차량의 무선 관제 기술 개발을 위한 가상 환경 기반 통합 시뮬레이터 개발)

  • Park, Pyung-Sun;Kim, Hyun-Myung;Ok, Min-Hwan;Jung, Jae-Il
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.1
    • /
    • pp.43-56
    • /
    • 2013
  • Personal Rapid Transit(PRT), which is one of the next generation convergence transport technology, PRT system requires operation technology for controlling diverse vehicles and dealing with a variety of abnormal driving situations on a large scale trackway structures in expected operational area more efficiently and reliably. Before developing PRT control technology, it is essential that multiple testing procedures stepwise with building small scale test-tracks and develop real unmanned-vehicles. However, it is expected that the experiments demand huge amount of time and physical cost. Thus, simulation in virtual environment is efficient to develop wireless based control technology for multiple PRT vehicles prior to building real-test environment. In this paper, we propose a VR-based integrated simulator which physics engine is applied so that it enables simulation of front-wheel-steering PRT system rather than simple rail track system. The proposed simulator is also developed that it can reflect geographical features, infrastructures and network topology of expected driving region.

AVM Stop-line Detection based Longitudinal Position Correction Algorithm for Automated Driving on Urban Roads (AVM 정지선인지기반 도심환경 종방향 측위보정 알고리즘)

  • Kim, Jongho;Lee, Hyunsung;Yoo, Jinsoo;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.12 no.2
    • /
    • pp.33-39
    • /
    • 2020
  • This paper presents an Around View Monitoring (AVM) stop-line detection based longitudinal position correction algorithm for automated driving on urban roads. Poor positioning accuracy of low-cost GPS has many problems for precise path tracking. Therefore, this study aims to improve the longitudinal positioning accuracy of low-cost GPS. The algorithm has three main processes. The first process is a stop-line detection. In this process, the stop-line is detected using Hough Transform from the AVM camera. The second process is a map matching. In the map matching process, to find the corrected vehicle position, the detected line is matched to the stop-line of the HD map using the Iterative Closest Point (ICP) method. Third, longitudinal position of low-cost GPS is updated using a corrected vehicle position with Kalman Filter. The proposed algorithm is implemented in the Robot Operating System (ROS) environment and verified on the actual urban road driving data. Compared to low-cost GPS only, Test results show the longitudinal localization performance was improved.

Development of Color Recognition Algorithm for Traffic Lights using Deep Learning Data (딥러닝 데이터 활용한 신호등 색 인식 알고리즘 개발)

  • Baek, Seoha;Kim, Jongho;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.2
    • /
    • pp.45-50
    • /
    • 2022
  • The vehicle motion in urban environment is determined by surrounding traffic flow, which cause understanding the flow to be a factor that dominantly affects the motion planning of the vehicle. The traffic flow in this urban environment is accessed using various urban infrastructure information. This paper represents a color recognition algorithm for traffic lights to perceive traffic condition which is a main information among various urban infrastructure information. Deep learning based vision open source realizes positions of traffic lights around the host vehicle. The data are processed to input data based on whether it exists on the route of ego vehicle. The colors of traffic lights are estimated through pixel values from the camera image. The proposed algorithm is validated in intersection situations with traffic lights on the test track. The results show that the proposed algorithm guarantees precise recognition on traffic lights associated with the ego vehicle path in urban intersection scenarios.

Vision-Based High Accuracy Vehicle Positioning Technology (비전 기반 고정밀 차량 측위 기술)

  • Jo, Sang-Il;Lee, Jaesung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.12
    • /
    • pp.1950-1958
    • /
    • 2016
  • Today, technique for precisely positioning vehicles is very important in C-ITS(Cooperative Intelligent Transport System), Self-Driving Car and other information technology relating to transportation. Though the most popular technology for vehicle positioning is the GPS, its accuracy is not reliable because of large delay caused by multipath effect, which is very bad for realtime traffic application. Therefore, in this paper, we proposed the Vision-Based High Accuracy Vehicle Positioning Technology. At the first step of proposed algorithm, the ROI is set up for road area and the vehicles detection. Then, center and four corners points of found vehicles on the road are determined. Lastly, these points are converted into aerial view map using homography matrix. By analyzing performance of algorithm, we find out that this technique has high accuracy with average error of result is less than about 20cm and the maximum value is not exceed 44.72cm. In addition, it is confirmed that the process of this algorithm is fast enough for real-time positioning at the $22-25_{FPS}$.