• Title/Summary/Keyword: 도심지 변화탐지

Search Result 17, Processing Time 0.019 seconds

Prediction Method for Ground Collapse Using Numerical Simulations (수치해석을 이용한 도로함몰 예측기법)

  • Kim, Hee Su;Ban, Hoki
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.9
    • /
    • pp.5-11
    • /
    • 2019
  • Recently, ground collapse in urban area has been widely paid attention as it frequently happens. To investigate the causes and suggest the measurements, many researches such as ground exploration from GPR, mock test and numerical simulations have been conducted. The proposed risk evaluation chart recently focuses only on the current ground status and is not capable of forecasting the ground collapse. This paper presents the prediction method of ground collapse using the numerical simulations of 30 cases considering void size and ground height as variables. It finally provides the charts that can analyze quantitatively the ground collapse.

Forecast of Land use Change for Efficient Development of Urban-Agricultural city (도농도시의 효율적 개발을 위한 토지이용변화예측)

  • Kim, Se-Kun;Han, Seung-Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.2
    • /
    • pp.73-79
    • /
    • 2012
  • This study attempts to analyze changes in land use patterns in a compound urban and agricultural city Kimje-si, using LANDSAT TM imagery and to forecast future changes accordingly. As a new approach to supervised classification, HSB(Hue, Saturation, Brightness)-transformed images were used to select training zones, and in doing so classification accuracy increased by more than 5 percent. Land use changes were forecasted by using a cellular automaton algorithm developed by applying Markov Chain techniques, and by taking into account classification results and GIS data, such as population of the pertinent region by area, DEMs, road networks, water systems. Upon comparing the results of the forecast of the land use changes, it appears that geographical features had the greatest influence on the changes. Moreover, a forecast of post-2030 land use change patterns demonstrates that 21.67 percent of mountain lands in Kimje-si is likely to be farmland, and 13.11 percent is likely to become city areas. The major changes are likely to occur in small mountain lands located in the heart of the city. Based on the study result, it seems certain that forecasting future land use changes can help plan land use in a compound urban and agricultural city to procure food resources.

Traffic Collision Detection at Intersections based on Motion Vector and Staying Period of Vehicles (차량의 움직임 벡터와 체류시간 기반의 교차로 추돌 검출)

  • Shin, Youn-Chul;Park, Joo-Heon;Lee, Myeong-Jin
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.1
    • /
    • pp.90-97
    • /
    • 2013
  • Recently, intelligent transportation system based on image processing has been developed. In this paper, we propose a collision detection algorithm based on the analysis of motion vectors and the staying periods of vehicles in intersections. Objects in the region of interest are extracted from the subtraction image between background images based on Gaussian mixture model and input images. Collisions and traffic jams are detected by analysing measured motion vectors of vehicles and their staying periods in intersections. Experiments are performed on video sequences actually recoded at intersections. Correct detection rate and false alarm rate are 85.7% and 7.7%, respectively.

Land Use Analysis of Chung-Ju Road Circumstance Using Remote Sensing (RS를 이용한 충주시 간선도로 주변의 토지이용 분석)

  • Shin, Ke-Jong;Yu, Young-Geol;Hwang, Eui-Jin
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.6
    • /
    • pp.436-443
    • /
    • 2009
  • There have been rapid increases to the demands for modeling diverse and complex spatial phenomena and utilizing spatial data through the computer across all the aspects of society. As a result, the importance and utilization of remote sensing and GIS's(geographic information systems) have also increased. It can produce digital data of enormous accuracy and value by incorporating remote sensing images into GIS analysis technology and make various thematic maps by classifying and analyzing land cover. Once such a map is made for the target area, it can easily do modeling and constant monitoring based on the map, revise the database with ease, and thus efficiently update geo-spatial information. Under the goal of analyzing changes to land cover along the road by combining the remote sensing and GIS technology, this study classified land cover from the images of two periods, detected changes to the six classes over ten years, and obtained statistics about the study area's quantitative area changes in order to provide basic decision making data for urban planning and development. By analyzing land use along the road, one can set up plans for the area along the road and the downtown to supplement each other.

Development of Buried Type TDR Module for Leak Detection from Buried Pipe (매설관 주변부 누수 탐지를 위한 매설형 TDR 모듈 개발)

  • Hong, Wontaek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.11
    • /
    • pp.31-37
    • /
    • 2021
  • To prevent accidents due to the cavities and loosened layers formed due to water leakage from the deteriorated buried pipes, evaluation of the changes in water contents around the buried pipes is required. As a method to evaluate the water contents of the soils, time domain reflectometry (TDR) system can be adopted. However, slender electrodes used in standard TDR probe may be damaged when buried in the ground. Thus, in this study, buried type TDR module was developed for the evaluation of the water contents with maintaining required shape of the electrodes in the ground. The TDR module is composed of three electrodes connected to the core conductor and outer conductor and a casing to prevent deformation and maintain alignment of the electrodes in the ground. For the verification of TDR waveforms measured using the TDR module, comparative analysis was conducted with the TDR waveforms measured using the standard TDR probe, and the relationship between the volumetric water content of the soils and the travel time of the guided electromagnetic wave was constructed. In addition, a model test was conducted to test the applicability of the buried type TDR module, and the experimental result shows that the TDR module clearly evaluates the changes in volumetric water contents due to the leakage from the modeled buried pipe. Therefore, the buried type TDR module may be effectively used for the health monitoring of the buried pipe and the evaluation of the water contents around the pipes buried in the urban pavements.

Time-lapse Geophysical Survey Analysis for Field-scale Test bed of Excavation Construction (실규모 굴착 시험장에서의 시간경과 물리탐사 자료 분석)

  • Shin, Dong Keun;Song, Seo Young;Kim, Bitnarae;Yoo, Huieun;Ki, Jung Seck;Nam, Myung Jin
    • The Journal of Engineering Geology
    • /
    • v.29 no.2
    • /
    • pp.137-151
    • /
    • 2019
  • Geophysical exploration techniques are effective for monitoring changes in the ground condition around the excavation project to prevent subsidence risks during excavation work, therefore, improving analysis techniques is required for applying and supplementing various geophysical exploration technologies. In this study, a field-scale on-site test was conducted to detect possible ground subsidence hazards and areas of relaxation zone that may occur during excavation work and due to underground water level changes. In order to carry out the field test, a real-scale excavation test bed was constructed and the geophysical exploration methods, such as electrical resistivity survey and multi-channel analysis of surface wave (MASW) survey for urban sites condition, have researched for optimal geophysical exploration parameter, design and correlation analysis between the results by reviewing the validity of each individual geophysical exploration and modeling. The results of this study showed the impact of each geophysical exploration on the relaxation zone and, in particular, the location of the underground water surface and the effects of excavation were identified using electrical resistivity survey. Further research on modeling will be required, taking into account the effects of excavation and groundwater.

Analysis of Building Characteristics and Temporal Changes of Fire Alarms (건물 특성과 시간적 변화가 소방시설관리시스템의 화재알람에 미치는 영향 분석 연구)

  • Lim, Gwanmuk;Ko, Seoltae;Kim, Yoosin;Park, Keon Chul
    • Journal of Internet Computing and Services
    • /
    • v.22 no.4
    • /
    • pp.83-98
    • /
    • 2021
  • The purpose of this study to find the factors influencing the fire alarms using IoT firefighting facility management system data of Seoul Fire & Disaster Headquarters, and to present academic implications for establishing an effective prevention system of fire situation. As the number of high and complex buildings increases and former bulidings are advanced, the fire detection facilities that can quickly respond to emergency situations are also increasing. However, if the accuracy of the fire situation is incorrectly detected and the accuracy is lowered, the inconvenience of the residents increases and the reliability decreases. Therefore, it is necessary to improve accuracy of the system through efficient inspection and the internal environment investigation of buildings. The purpose of this study is to find out that false detection may occur due to building characteristics such as usage or time, and to aim of emphasizing the need for efficient system inspection and controlling the internal environment. As a result, it is found that the size(total area) of the building had the greatest effect on the fire alarms, and the fire alarms increased as private buildings, R-type receivers, and a large number of failure or shutoff days. In addition, factors that influencing fire alarms were different depending on the main usage of the building. In terms of time, it was found to follow people's daily patterns during weekdays(9 am to 6 pm), and each peaked around 10 am and 2 pm. This study was claimed that it is necessary to investigate the building environment that caused the fire alarms, along with the system internal inspection. Also, it propose additional recording of building environment data in real-time for follow-up research and system enhancement.