• Title/Summary/Keyword: 도시 침수 예측

Search Result 167, Processing Time 0.033 seconds

Correlation Analysis of Basin Characteristics and Limit Rainfall for Inundation Forecasting in Urban Area (도시지역 침수예측을 위한 유역특성과 한계강우량에 대한 상관분석)

  • Kang, Ho Seon;Cho, Jae Woong;Lee, Han Seung;Hwang, Jeong Geun;Moon, Hae Jin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.97-97
    • /
    • 2020
  • Flooding in urban areas is caused by heavy rains for a short period of time and drains within 1 to 2 hours. It is also characterized by a small flooding area. In addition, flooding is often caused by various and complex causes such as land use, basin slope, pipe, street inlet, drainage pumping station, making it difficult to predict flooding. Therefore, this study analyzes the effect of each basin characteristic on the occurrence of flooding in urban areas by correlating various basin characteristics, whether or not flooding occurred, and rainfall(Limit Rainfall), and intends to use the data for urban flood prediction. As a result of analyzing the relationship between the imperviousness and the urban slope, pipe, threshold rainfall and limit rainfall, the pipe showed a correlation coefficient of 0.32, and the remaining factors showed low correlation. However, the multiple correlation analysis showed the correlation coefficient about 0.81 - 0.96 depending on the combination, indicating that the correlation was relatively high. In the future, I will further analyze various urban characteristics data, such as area by land use, average watershed elevation, river and coastal proximity, and further analyze the relationship between flooding occurrence and urban characteristics. The relationship between the urban characteristics, the occurrence of flooding and the limiting rainfall amount suggested in this study is expected to be used as basic data for the study to predict urban flooding in the future.

  • PDF

A Study on the Interevent Time Definition(IETD) depending on the Population of Rainfall Data in Busan Metropolitan City (부산광역시 강우자료의 모집단 구분에 따른 무강우 지속시간(IETD) 분석 연구)

  • Baek, Jongseok;Cho, Hyoseob;Kim, Hyungsan;Kim, Jaemoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.416-416
    • /
    • 2022
  • RCP(Representative concentrate pathways) 기후변화 시나리오에서는 2100년까지 연강 강수량과 강우지속시간이 지속적으로 증가할 것으로 예측하고 있다. 이에 도시지역의 하천 범람 및 내수 침수 예방을 위해 방재성늑목표의 상향조정과 방재 인프라의 설계년수 재조정 등에 대한 논의가 진행되고 있다. 하지만 수재해 예방을 위한 강우설계기준에서는 무강우 지속시간의 설정을 확보할 수 있는 최대 규모의 모집단을 통해 산정하는 방식으로 제시되고 있어 최근 기후변화로 인한 강우특성의 변화가 반영되기에 어려움이 있다. 본 연구에서는 부산광역시 강우자료의 모집단을 10년, 20년, 30년으로 구분하여 자기상관계수(Autocorrelation coefficient, AC) 분석, 변동계수(Coefficient of variation, CV) 분석, 연평균 강우사상 발생 개수(Average annual number of rainfall event, NRE) 분석 방법을 적용하여 비교 분석을 수행하였다. 그 결과, 자기상관계수 분석 방법과 변동계수 분석 방법에서는 모집단의 규모가 클수록 튀는 자료를 상쇄하여 안정적인 결과를 나타내는 반면, 연평균 강우사상 발생 개수를 확인 하였을 때는 대상기간에 큰 영향을 받지 않는 것으로 확인되었다. 또한, 모집단의 규모가 클수록 무강우 지속시간이 길어지는 것으로 분석되어 기후변화로 인한 최근의 강우특성을 반영하기 위해서는 모집단의 규모를 크게 잡는 것이 효과적이지 않을 수 있다는 점을 확인하였다. 이는 강우자료 분석 시 분석방법 및 모집단의 규모를 달리하여 무강우 지속시간을 산정해보고, 설계 목적에 따라 적정한 의사결정이 필요함을 시사한다.

  • PDF

Development of 1ST-Model for 1 hour-heavy rain damage scale prediction based on AI models (1시간 호우피해 규모 예측을 위한 AI 기반의 1ST-모형 개발)

  • Lee, Joonhak;Lee, Haneul;Kang, Narae;Hwang, Seokhwan;Kim, Hung Soo;Kim, Soojun
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.5
    • /
    • pp.311-323
    • /
    • 2023
  • In order to reduce disaster damage by localized heavy rains, floods, and urban inundation, it is important to know in advance whether natural disasters occur. Currently, heavy rain watch and heavy rain warning by the criteria of the Korea Meteorological Administration are being issued in Korea. However, since this one criterion is applied to the whole country, we can not clearly recognize heavy rain damage for a specific region in advance. Therefore, in this paper, we tried to reset the current criteria for a special weather report which considers the regional characteristics and to predict the damage caused by rainfall after 1 hour. The study area was selected as Gyeonggi-province, where has more frequent heavy rain damage than other regions. Then, the rainfall inducing disaster or hazard-triggering rainfall was set by utilizing hourly rainfall and heavy rain damage data, considering the local characteristics. The heavy rain damage prediction model was developed by a decision tree model and a random forest model, which are machine learning technique and by rainfall inducing disaster and rainfall data. In addition, long short-term memory and deep neural network models were used for predicting rainfall after 1 hour. The predicted rainfall by a developed prediction model was applied to the trained classification model and we predicted whether the rain damage after 1 hour will be occurred or not and we called this as 1ST-Model. The 1ST-Model can be used for preventing and preparing heavy rain disaster and it is judged to be of great contribution in reducing damage caused by heavy rain.

An Analysis of Hydraulic Effect due to the Outflow of Paldang Dam at Hangang Parks (팔당댐 방류량에 따른 한강 시민공원의 수리학적 영향 분석)

  • Lee, Jae-Joon;Kwak, Chang-Jae;Lee, Sang-Won
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.6
    • /
    • pp.101-111
    • /
    • 2008
  • Hangang Parks have been played an important role as the source of various Civilian activities by providing a natural space near Han River ever since it was developed. Due to the local-heavy rain caused by recent climate change, the Hangang Parks tends to be easily overflowed. Evacuation of the park in emergency and its controlled system should be made for the sake of Civilian's safety. In this study, various basic data and several parameters were analyzed to simulate the hydraulic effect of Hangang Parks based on the outflow in $P1/4{\div}1/4^3$ Dam. Rising effects of flood water level were investigated through the one-dimensional and twodimensional numerical hydraulic models. Relationships of water level and travel time of flood between key station and centeral part of each park were also identified. It can be used to forecast the future flood water level of each individual park in Hangang Parks. Obtained results can be used to establish the rational plan of usage, management, citizen's safety, and emergency action plan of the Hangang Parks as the flood is occurred from the outflow of Paldang dam.

Regional Frequency Analysis for Future Precipitation from RCP Scenarios (대표농도경로 시나리오에 의한 미래 강수량의 지역빈도해석)

  • Kim, Duck Hwan;Hong, Seung Jin;Choi, Chang Hyun;Han, Dae Gun;Lee, So Jong;Kim, Hung Soo
    • Journal of Wetlands Research
    • /
    • v.17 no.1
    • /
    • pp.80-90
    • /
    • 2015
  • Variability of precipitation pattern and intensity are increasing due to the urbanization and industrialization which induce increasing impervious area and the climate change. Therefore, more severe urban inundation and flood damage will be occurred by localized heavy precipitation event in the future. In this study, we analyze the future frequency based precipitation under climate change based on the regional frequency analysis. The observed precipitation data from 58 stations provided by Korea Meteorological Administration(KMA) are collected and the data period is more than 30 years. Then the frequency based precipitation for the observed data by regional frequency analysis are estimated. In order to remove the bias from the simulated precipitation by RCP scenarios, the quantile mapping method and outlier test are used. The regional frequency analysis using L-moment method(Hosking and Wallis, 1997) is performed and the future frequency based precipitation for 80, 100, and 200 years of return period are estimated. As a result, future frequency based precipitation in South Korea will be increased by 25 to 27 percent. Especially the result for Jeju Island shows that the increasing rate will be higher than other areas. Severe heavy precipitation could be more and more frequently occurred in the future due to the climate change and the runoff characteristics will be also changed by urbanization, industrialization, and climate change. Therefore, we need prepare flood prevention measures for our flood safety in the future.

Consideration on the Operation of water level management and Environmental Change Associated with Inner Dike Constructions in Saemangeum Reservoir (새만금호 방수제 공사에 따른 관리수위 운영과 환경변화에 관한 고찰)

  • Choi, Jung-Hoon;Oh, Chan-Sung;Cho, Young-Kweon;Ahn, Chi-Ho
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.4
    • /
    • pp.290-298
    • /
    • 2013
  • A Saemangeum Development Project, which is a national project in South Korea, has started with the objective of developing the reclaimed area mainly agricultural land use since the mid'80s. To develop a model of the global eco-reclamation, constructions of the eco-friendly counter facilities such as sluice gates and inner dikes, as well as environmental preservation measures for an estuary reservoir, have been carried out. However, reasonable measures of the water quality management for the Saemangeum area are required. Thus, the purpose of this study is to rigorously analyze and quantitatively evaluate the environmental problems due to the water level management associated with inner dike constructions. To achieve these objectives, the affecting factors on determination of water level management are described and a series of calibrated transient-state numerical simulations was performed to demonstrate the salinity distribution difference in the estuary before and after the construction of inner dikes. The overall salinity reduced about 2~5 psu, and the seawater intrusion was weakened by a well-regulated waterway after construction of the inner dikes compared to before construction of them.

Estimation of Head Loss Coefficients at Surcharged Square Manhole Using Numerical Model (수치모형을 이용한 과부하 사각형 맨홀에서의 손실계수 산정)

  • Kim, Jung-Soo;Lim, Ga-Hui;Rim, Chang-Soo;Yoon, Sei-Eui
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.3
    • /
    • pp.143-150
    • /
    • 2011
  • Energy loss at manholes, often exceeding friction loss of pipes under surcharged flow, is considered as one of the major causes of inundation in urban area. Therefore, it is important to analyze the head losses at manholes, especially in case of surcharged flow. The stream characteristics were analyzed and head loss coefficients were estimated by using the computational fluid dynamics(CFD) model, FLUENT 6.3, at surcharged square manhole in this study. The CFD model was carefully assessed by comparing simulated results with the experimental ones. The study results indicate that there was good agreement between simulation model and experiment. The CFD model was proved to be capable of estimating the head loss coefficients at surcharged manholes. The head loss coefficients with variation of the ratio of manhole width(B) to inflow pipe diameter(d) and variation of the drop height at surcharged square manhole with a straight-path through were calculated using FLUENT 6.3. As the ratio of B/d increases, head loss coefficient increases. The depth and head loss coefficient at manhole were gradually increased when the drop height was more than 5cm. Therefore, the CFD model(Fluent 6.3) might be used as a tool to simulate the water depth, energy losses, and velocity distribution at surcharged square manhole.