• Title/Summary/Keyword: 도시재생 시나리오

Search Result 5, Processing Time 0.021 seconds

Derivation of Urban Regeneration Scenario for the Improvement of Habitability in Hinterland of Port City -Donggu and Namgu District of Busan Metropolitan City as the Subjects- (항만배후지역의 거주성 향상을 위한 도시재생 시나리오 도출 -부산광역시 동구와 남구를 대상으로-)

  • Hwang, Sun Ah;Kim, Jong Gu;Shin, Eun Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.6
    • /
    • pp.1095-1108
    • /
    • 2017
  • The harbor back area is not a planned space, but rather a space created by harbor space development. For this reason, the residential environment in the area behind the port has been very poor from the past to the present. Recently, the redevelopment has been increasing in accordance with the function of the port space. However, the development of the domestic port space is limited to the port space, and there is still little preparation for improvement of the residential environment in the port area. In this study, the degree of decline of the port area was diagnosed and analyzed for the purpose of deriving urban regeneration scenarios to improve the residential environment of port - backed areas. The urban regeneration factor to improve the livability of the port - backed area, which has been declining since then, was derived, and the scenarios in which each factor was applied were constructed.

A Study on the Effect of the Urban Regeneration Project on the Reduction of Carbon Emission - A Case Study of Jeonju Test-Bed - (도시재생사업 적용에 따른 탄소저감 효과 - 전주TB지역을 대상으로 -)

  • Park, Kiyong;Lee, Sangeun;Park, Heekyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.1
    • /
    • pp.65-74
    • /
    • 2016
  • This study mainly focuses on urban regeneration project as a countermeasure to resolve climate change issues by analyzing the carbon-reduction effect of Jeonju test-bed cases. First, an urban regeneration project is designed for city, Jeonju by analyzing its environmental problems and potential improvement. Then, carbon emission and reduction amounts are evaluated for different businesses and scenarios. Carbon emission sources are classified according to a standard suggested by IPCC, and the emissions are calculated by various standard methods. The result shows that carbon emission amount in Jeonju test-bed is 102,149 tCO2eq. The fact that 70% of the emission from energy sector originates from buildings implies that urban regeneration projects can concentrate on building portions to effectively reduce carbon emission. It is also projected carbon emission will decrease by 3,826tCo2eq in 2020 compared to 2011, reduction mainly based on overall population and industry shrinkage. When urban regeneration projects are applied to 5 urban sectors (urban environment, land use, green transportation, low carbon energy, and green buildings) total of 10,628tCO2eq is reduced and 4,857tCO2 (=15.47%) when only applied to the green building sector. Moreover, different carbon reduction scenarios are set up to meet each goal of different sectors. The result shows that scenario A, B, and C each has 5%, 11%, and 15% of carbon reduction, respectively. It is recommended to apply scenario B to achieve 11% reduction goal in a long term. Therefore, this research can be a valuable guideline for planning future urban regeneration projects and relative policies by analyzing the present urban issues and suggesting improvement directions.

Economic Impact of City-Gas Industry by the Expansion of Natural Gas Use in Power Generation (발전부문 천연가스 사용 확대에 따른 도시가스 산업의 경제적 파급효과 분석)

  • Yang, Minyoung;Kim, Jinsoo
    • Environmental and Resource Economics Review
    • /
    • v.26 no.4
    • /
    • pp.549-575
    • /
    • 2017
  • Recently, power mix of Korea is planned to be changed from coal-fired and nuclear to gas-combined and renewables by the energy policy of new government. This change will also affect city-gas industry. This paper analyze the economic impact of city-gas industry by scenario that switching coal-fired and nuclear power generation into gas-combined and fuel cell. 2030 input-output table is estimated to take the transfer period into account. As results, the induced impact by city-gas industry to the others was negative when switching into gas-combined while that was positive when switching into fuel cell. This results imply that the gas-fired can be a feasible alternative for short-run but fuel cell is more helpful for our economy in long-run.

A Study on the Profitable Urban Park Model using Smart Street Light System (스마트 가로등 시스템을 적용한 수익형 도시공원모델에 관한 연구)

  • Lee, Ji-Hee;Cho, Han-Bo;Kim, Tae-Han
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.4
    • /
    • pp.28-35
    • /
    • 2012
  • Recently, as the social interest increase has been focused on new renewable energy system to build-up sustainable urban planning system, the related studies have been actively conducting. As well as in other areas, the construction area, which accounts for over 40% of the total energy consumption, clearly showed this tendency. Whereas, various landscape facilities applying renewable energy equipments have been manufactured and installed, systematic study available for planning and designing is rarely found in Korea. This study is expected to contribute to the landscape planning and designing by quantifying the energy-efficient and economic advantages of the renewable energy system for landscape facilities. For this purpose, the analysis on the energy-efficiency and economic values under the scenario that the current fossil power supply for the streetlights in urban parks in Seoul, Daegu, and Incheon were replaced by photovoltaic power generation were performed through RETScreen$^{(R)}$ a clean energy simulation program based on the NASA Satellite Meteorological Data. As a result, the generated power and the economic values vary depending on the climatic features of the appointed cities. This study will be used to build up the effective decision-making in applying the clean renewable system to the plan and design of landscaping.

Traffic Impacts of Transit-oriented Urban Regeneration (TOD형 도시재생사업의 교통영향 분석)

  • Hwang, Kee Yeon;Cho, Yong Hak
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4D
    • /
    • pp.469-476
    • /
    • 2008
  • Recently, TOD gains popularity as a traffic solution measure of high density urban regeneration projects. The purpose of this study is to investigate traffic impacts of high density TOD projects, and to identify the issues to be resolved. For a case study, it chooses Gangnamgucheong station in Gangnam area served by two subway lines, and designates 400m radius from the station as a site for high-density development. The MOEs chosen for this study is traffic volume, time, distance, speed, and mode share. The SECOM model is adopted for traffic simulation. The analysis results show that high-density TOD is an effective tool for traffic improvement even with only one station area being implemented. It is found that the traffic volume increases near the station in nature where high-density development occurs, but it declines overall in the rest of Gangam area. The total travel time and distance of passenger vehicles decline, meaning that the traffic condition becomes better than before. With regulation on parking supply, the improvement becomes more vivid. In terms of the changes of traffic speed, both alternatives show 4.1% increase in speed, but the difference between alternatives is not quite noticeable because of the induced vehicle demand driven to the streets with improved traffic condition. The mode share changes occur for the benefit of subway ridership, because the study station is equipped with two subway line services. When mixed with parking supply restriction, the impact becomes clearer.