• Title/Summary/Keyword: 도시복사

Search Result 87, Processing Time 0.03 seconds

Comparison and Analysis of Radiation Environment between Downtown and Suburban Area during Summer Season (대구 도심과 인근 교외지역의 하절기 복사 성분 특성 연구)

  • Choi, Dong-Ho;Lee, Bu-Yong;Oh, Ho-Yeop
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.1
    • /
    • pp.105-116
    • /
    • 2014
  • The objective of this study was to compare and analyze of radiation environment between downtown and suburban area by observation of short, diffuse and long-wave radiation during summer season. The followings are main results from this study. 1) The trends of long-wave radiation is increasing from May to August and the variation of daily range is decreased. It is confirmed that the temperature was closely relevant to long wave radiation. 2) During observation period, suburban area is higher than downtown the value of direct solar radiation. 3) There are much direct solar radiation in suburban area than downtown. But, it was measured much more horizontal solar radiation at the downtown area. From the this result, we can conclude that diffuse radiation play a important role at horizontal solar radiation.

An Evaluation of Human Thermal Comfort and Improvement of Thermal Environment by Spatial Structure (공간 구조별 열쾌적성 평가와 열환경 개선방안)

  • Lee, Jung-A;Jung, Dae-Young;Chon, Jin-Hyung;Lee, Sang-Moon;Song, Young-Bae
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.38 no.5
    • /
    • pp.12-20
    • /
    • 2010
  • The purpose of this study is to evaluate human thermal comfort by spatial structure and to explore solutions to improve the thermal environment of a small urban space. The study site was Korea University campus. Thermal conditions were measured to evaluate the quality of the thermal environment in each type of space within the study site. Micrometeorology measurements, analysis of space characteristics for using fish-eye lens photography, and thermal comfort modeling through the use of collected meteorological data, such as temperature and humidity, were performed. Results showed that the level of thermal comfort for humans differs depending on the types of space within the study site. Thermal comfort is better in open spaces than enclosed in the aspect of radiative mean temperature, Predicted Mean Vote(PMV), and Physiologically Equivalent Temperature(PET). This fact is probably due to shadows or buildings or trees that may block solar radiation. Thus, it is necessary to consider the spatial arrangements of buildings and trees to enhance openness and ventilation in the space. Paving materials and exterior building materials should also be selected to lower the radiant temperature. Given these results, a quantitative evaluation on human thermal comfort could propose a way to plan user comfortable small urban spaces. Study methods used and results provided in the study can promote a better way for urban space planning direction to improve environmental quality.

Effects of Changes of Climate, Groundwater Withdrawal, and Landuse on Total Flow During Dry Period (기후, 지하수 취수 및 토지이용 변화의 건기 총유출량에 대한 영향)

  • Lee, Kil-Seong;Chung, Eun-Sung;Shin, Mun-Joo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.164-168
    • /
    • 2006
  • 본 연구는 SWAT 모형을 이용하여 기상, 지하수 취수, 토지이용 변화에 대한 건기 총유출량의 민감도를 제시하였으며 더 나아가 보다 일반적인 건기의 총 유출량을 추정하기 위해 건기 총강우량, 전 우기 총강우량, 평균 일 최대온도, 일평균 태양복사량과 같은 기상 변수들과 지하수 취수량 및 도시면적 비율을 이용하여 회귀식을 도출하였다. 도출된 식을 이용하여 기후변화에 대한 변화를 살펴보기 위하여 온도와 강우량의 변화에 대한 건기 총유출량의 변화율을 제시하였는데 기후변화로 인해 온도가 $1^{\circ}C$ 상승할 경우 7.7%, $2^{\circ}C$ 상승시 17.1%, $3^{\circ}C$ 상승할 경우 27.9%의 건기의 총 유출량은 감소하는 것으로 나타났다. 또 건기 총 강우량이 5% 감소할 경우 유출량은 5.63%, 10% 감소할 경우에는 10.41%, 15% 감소할 경우는 14.25% 감소하는 것으로 나타났다. 지하수 취수량은 총 유출량과 관계가 높은데 반해 토지이용 변화는 산간유역인 대상유역의 경우 크게 영향을 미치지 않음을 알 수 있었다. 본 연구에서 제안된 식은 기저유출에 영향을 크게 미치는 강우와 기온 및 태양복사량을 포함하는 기상상태, 지하수 취수량, 도시면적 비율을 변수로 갖는 식이므로 대상유역에 대해 미래 건기의 수자원 확보량을 예측하는데 유용하게 사용될 수 있다.

  • PDF

Long and Short Wave Radiation and Correlation Analysis Between Downtown and Suburban Area(I) - Observation of the Long and Short Wave Radiation in Summer and Winter Season of Daegu - (도심부와 교외지역의 장·단파 복사와 상관도 분석 (I) -대구지역의 동·하절기 장·단파 복사 관측과 해석 -)

  • Choi, Dong-Ho;Lee, Bu-Yong
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.4
    • /
    • pp.94-100
    • /
    • 2013
  • The objective of this study was to compare and analyze for seasonal long short-wave radiation characteristics between downtown area and suburban area in Daegu through field observations. This study was confirmed the regional and seasonal radiation environments and it can utilize as basic data for the analysis of the urban radiation environment and the effects of urbanization. The followings are main results from this study. 1) The downward shortwave radiation showed the similar value of the radiation generally in the downtown area and the suburban area of the city during the winter and summer season. but, long-wave radiation is always higher in downtown area. 2) In case of the long-wave radiation at two stations, we observed $230{\sim}270W/m^2$ in the winter season and $415{\sim}470W/m^2$ in summer season. As a result, we can see summer season is higher than winter about two times in long-wave radiation. 3) In case of short wave radiation, there is high correlation between two stations in winter season but very low correlation between two stations in summer season because of local atmosphere unstability and etc.

Analysis on Daily Variation Mechanism of Short-wave Radiation between Downtown and Suburban Area during Summer Season (하절기 도심과밀지역과 인근 교외지역의 단파복사 일변화 메커니즘에 대한 해석)

  • Choi, Dong-Ho;Lee, Bu-Yong;Jeong, Hyeong-Se
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.4
    • /
    • pp.111-122
    • /
    • 2014
  • The purpose of this study is to understand daily variation of short-wave radiation trends according to the state of surface and observation of atmosphere conditions in downtown and suburban observation area. The followings are main results from this study. 1) We found out daily air temperature variation of downtown is less than that of suburban area because of bigger heat capacity of artificial elements such as massive buildings and pavements. 2) It is more effective to estimate of air condition by water vapor pressure than relative humidity in the atmosphere. 3) The difference of solar radiation ratio between downtown and suburban area is dependant on different atmosphere conditions at two observation stations.

Analysis of Cloudiness and Radiation Characteristics during Summer in the Greater Daegu Area (대구지역의 하절기 운량과 장·단파 복사 특성 분석)

  • Baek, Chang-Hyeon;Choi, Dong-Ho;Lee, Bu-Yong;Lee, In-Gyu
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.4
    • /
    • pp.13-22
    • /
    • 2017
  • In this study, long and short-wave radiations were observed in urban and suburban areas during the summer season, and frequency analysis was performed for each radiation intensity by a new analysis method. The following results were obtained. (1) Long-wave radiation values were found to be larger in the afternoon than in the morning, in both urban and suburban areas, unlike short-wave radiation values. (2) Short-wave radiation showed a right-skewed frequency distribution. In the high energy area greater than $900W/m^2$, the frequency was significantly higher in the suburbs than in the urban areas. (3) Long-wave radiation was in the range of $290{\sim}479W/m^2$, its frequency distribution resembled a normal distribution, and the frequency of 410, $420W/m^2$ was the highest.

Analysis of Thermal Environment Modification Effects of Street Trees Depending on Planting Types and Street Directions in Summertime Using ENVI-Met Simulation (ENVI-Met 시뮬레이션을 통한 도로 방향별 가로수 식재 형태에 따른 여름철 열환경 개선 효과 분석)

  • Lim, Hyeonwoo;Jo, Sangman;Park, Sookuk
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.50 no.2
    • /
    • pp.1-22
    • /
    • 2022
  • The modification effects of street trees on outdoor thermal comfort in summertime according to tree planting types and road direction were analyzed using a computer simulation program, ENVI-met. With trees, the air temperature and wind speed decreased, and the relative humidity increased. In the case of mean radiant temperature (Tmrt) and human thermal sensation, physiological equivalent temperature (PET) and universal thermal climate index (UTCI), there was a decrease during the daytime. The greatest change among the meteorological factors by trees happened in Tmrt, and PET and UTCI showed similar patterns with Tmrt·The most effective tree planting type on thermal comfort modification was low tree height, wide tree crown, high leaf area index, and narrow planting interval (LWDN). Tmrt, PET and UTCI showed a large difference depending on shadow patterns of buildings and trees according to solar altitude and azimuth angles, and building locations. When the building shade areas increased, the thermal modification effect by trees decreased. In particular, results on the east and west sidewalks showed a large deviation over time. When applying the LWDN, the northwest, west and southwest sidewalks showed a significant reduction of 8.6-12.3℃ PET and 4.2-4.5℃ UTCI at 10:00, and the northeast, east and southeast sidewalks showed 8.1-11.8℃ PET and 4.4-5.0℃ UTCI at 16:00. On the other hand, when the least effective type (high tree height, narrow tree crown, low leaf area index, and wide planting interval) was applied, the maximum reduction was up to 1.8℃ PET and 0.9℃ UTCI on the eastern sidewalks, and up to 3.0℃ PET and 0.9℃ UTCI on the western ones. In addition, the difference in modification effects on Tmrt, PET and UTCI between the tree planting types was not significant when the tree effects were reduced by the effects of buildings. These results can be used as basic data to make the most appropriate street tree planting model for thermal comfort improvement in urban areas in summer.

Urbanization Effects on Reference Evapotranspiration (도시화에 따른 수문기후변화 II (도시화가 기준 증발산량에 미치는 영향))

  • Rim, Chang-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.7
    • /
    • pp.571-583
    • /
    • 2007
  • The effects of climatic changes owing to urbanization, geographical and topographical conditions on Penman-Monteith reference evapotranspiration, and energy and aerodynamic terms of Penman-Monteith reference evapotranspiration have been studied. In this study, 56 climatological stations including the Seoul metropolis in South Korea have been selected, and the area of study site was set at $314\;km^2$. The climatological station is centrally located In the study area with a 10 km radius. The geographical and topographical characteristics of these sites were examined using GIS analysis. Land use status of the study area was also examined to estimate the extent of urbanization. The study results indicated that the variation of reference evapotranspiration rate is closely related to urbanization in most climatological stations. The level of change in reference evapotranspiration was higher in areas with higher urbanization rates. The change in reference evapotranspiration appears to be caused by temperature rises following heat island phenomena due to urbanization, and by the decrease in humidity, wind speed and sunshine duration due to the Increase in residential areas in urban districts. Especially, the humidity decrease causes a significant decrease in evapotranspiration rate. The study results showed that climatic change due to urbanization and proximity to the coast had the greatest effect on reference evapotranspiration.

褪變檔案字迹的恢復与保護

  • 이옥호
    • Journal of Korean Society of Archives and Records Management
    • /
    • v.2 no.2
    • /
    • pp.205-211
    • /
    • 2002
  • 퇴변한 필적을 회복하고 보호하는 것에 관계되는 여러 학과를 설립하여, 각고의 연구 끝에 이 영역에서 일련의 중대한 돌파를 얻었다. 볼펜 복사지 푸른색 먹(黑) 연필 청사진 등의 필적 재료의 퇴색 확산 회복 고정기제 및 종이 노화와 보호기제 등 복잡한 요소를 연구 분석하여 일련의 퇴변한 당안 필적 회복과 보호제를 연구 제작하였다. 이 일련의 성과가 세상에 나온 이래 중국 30개성 자치구에서 정부기관 경찰 법원 도시규획과 건설 지질 수도 전기 철로 석유 조사 설계 군사 등의 일부분 당안에서 응용되었고, 심각하게 퇴변한 대량의 진귀한 문헌 문물로 하여금 원래 모습을 회복시켰으며, 영구 보존할 필요가 있는 문건을 내구적으로 고정시킬 수 있었다. 동시에 국제 당안계 및 지질문물 수장, 연구 부분에서 강렬한 영향을 불러일으켰다.

A Way for Creating Human Bioclimatic Maps using Human Thermal Sensation (Comfort) and Applying the Maps to Urban and Landscape Planning and Design (인간 열환경 지수를 이용한 생기후지도 작성 및 도시·조경계획 및 디자인에의 적용방안)

  • Park, Soo-Kuk
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.41 no.1
    • /
    • pp.21-33
    • /
    • 2013
  • The purpose of this study is to find applicabilities of human bioclimatic maps, using human thermal sensation(comfort) in summer, with microclimatic in situ data and computer simulation results at the study site of downtown Daegu. This includes the central business district(CBD) area and two urban parks, the Debt Redemption Movement Memorial Park and the 2.28 Park, for urban and landscape planning and design. Climatic data and urban setting information for the analysis of human thermal sensation were obtained from in situ measurement and the geographic information system data. As a result, the CBD had higher air temperature than the parks when the wind speed was low. Relative humidities were opposite to the air temperature. Especially, same directional streets with local wind direction had lower air temperature than streets perpendicular to the wind direction. The most important climatic variable of human thermal sensation in summer was direct beam solar radiation. Also, creating shadow areas would be the most relevant method for modifying hot thermal environments in urban areas. The most effective method of creating shadow patterns was making a tree shadow over a pergola, and the second best one was making a tree shadow on the front of north directional building walls. Moreover, how to plant trees for creating shadow patterns was important as well as what kind of trees should be planted. The results of human thermal sensation were warm to very hot at sunny areas and neutral to warm at shaded ones. At the sunny areas, wide, squared shape areas had a little bit higher thermal sensation than those of narrow streets. The albedo change of building walls 0.15 and ground surface 0.1 could change 1/6 of a sensation level at the shaded areas and 1/3 at the sunny ones. These microclimatic approaches will be useful to find appropriate methods for modifying thermal environments in urban areas.