• Title/Summary/Keyword: 도로 성토

Search Result 168, Processing Time 0.024 seconds

Instability Analysis of Road Landfill Slope during Heavy Rainfall (호우시 도로성토사면의 사면불안정 분석)

  • Kim, Young-Muk;Park, Hyang-Keun;Chol, Mun-Hee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.3
    • /
    • pp.41-50
    • /
    • 2004
  • The study of seepage behavior is very important to slope stability of road landfill for heavy rainfall season. This study is done to propose more stable of road landfill based on analysis of seepage behavior and slope stability for some cases of road landfill. The selected sections of collapsed road landfill are most general case of road landfill, a case is landfill on the ground area and another case is on the slope area. The results of this study is summarized as follows. It is founded that the road landfill on the ground area is increased saturation region due to rainfall infiltration, and the seepage behavior of road landfill is solved by theory of unsaturated flow. The road landfill is more unstable due to rainfall infiltration at the slope surface, especially during heavy rainfall. The case of road landfill on the slope area is analyzed in consideration of slope surface infiltration, and it is founded that the slope instability is increased because of rainfall infiltration. The drain layer located on the original ground which made by more permeable materials could be good action of slope stability in the case of road landfill on the slope area.

  • PDF

성토다짐의 밀도 및 수분 측정에 관한 연구

  • 김기준
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2002.06a
    • /
    • pp.38-46
    • /
    • 2002
  • 본 연구에서는 성토 다짐용 밀도 및 수분의 측정을 위하여 중성자 검출기는 2개 이상 그리고 감마선 검출기는 5개 이상 사용하여 함을 알 수 있었고, 또한 방사능 대비 방사선 방출수가 다른 선원에 비하여 우수한 Co-60 감마선원과 Cf-252 중성자 선원을 본 계기에 이용하는 것이 정밀도를 향상시키기 위하여 유리하다는 것을 알 수 있었다. 본 연구에서 설계하고 제작한 성토 다짐용관리용 밀도 및 수분 함량 측정기는 국내의 도로 공사 현장에서 성토의 다짐관리를 위하여 이용될 수 있을것으로 사료된다.

  • PDF

A Study on the Standard of Cutting and Filling Height to Minimize Topographical Damage in Road Side Construction (도로건설사업 시 지형 훼손 최소화를 위한 절·성토 높이 기준 연구)

  • Kim, Mi-Ri;Kim, Su-Ryeon;Shin, Ji-Hoon;Sung, Hyun-Chan
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.42 no.1
    • /
    • pp.115-122
    • /
    • 2014
  • The purpose of this study is to analyze the relationship between height of cutting and filling as well as the height of slope of roadsides. It also suggests the rational height of slope to minimize topographical damage in road construction. Hence, in this study, 44 cases of expert's opinions related to height of slope in Environmental Impact Assessment(EIA) for road construction projects are reviewed, and 23 cases of data related to height of cutting and filling in EIA for road construction projects are used for analyzing relationship between height of slopes and height of cutting or filling of roadside. The results are as follows; Most of heights of cutting, filling and slope in EIA for road construction are over the required standards 20 or 30m(in case of cutting) and 10 or 15m(in case of filling). It also shows that there is high-level correlation between height of cutting and filling and height of slope of roadside. According to regression analysis, it is suggested that the general standard of each heights of cutting and filling are 25.33~33.23m(in case of cutting) and 14.56~18.08m(in case of filling), but it should be considered in EIA review for road construction projects that these heights suggested in this study are over the required standards.

Assessment of tunnel stability according to height of embankment by numerical analysis (수치해석을 통한 성토 높이에 따른 터널 안정성 평가 연구)

  • Lee, Kang-Hyun;Lee, Sangrae;Kim, Nag-Young
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.1
    • /
    • pp.37-45
    • /
    • 2021
  • The construction of the tunnel portal should be careful because cover depth is shallow and it is difficult to exhibit the arching effect. Tunnel stability may be reduced with additional embankment above the portal of tunnel. In this study, in order to examine the stability of the tunnel according to additional embankment above the portal of tunnel, numerical analysis was performed while changing the ground conditions and height of embankment. As a result of the numerical analysis, it was found that the allowable flexural compressive stress of shotcrete and allowable axial force of rockbolts were exceeded when the height of additional embankment was 12 m in rock mass rating V. When considering the displacement, the range of the plastic region and the behavior of the support materials, the tunnel stability seems to be greatly reduced if the height of additional embankment above the portal of tunnel exceeds 10 m.

Characteristics of Lateral Flow due to Embankments for Road Construction on Soft Grounds Using Vertical Drain Methods (연직배수공법이 적용된 연약지반 상에 도로성토로 인한 측방유동의 특성)

  • Hong, Won-Pyo;Kim, Jung-Hoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.9
    • /
    • pp.5-15
    • /
    • 2012
  • Field monitoring data for embankments in thirteen road construction sites at coastal area of the Korean Peninsula were analyzed to investigate the characteristics of lateral flow in soft grounds, to which vertical drain methods were applied. First of all, the effect of the embankment scale on the lateral flow was investigated. Thicker soft soils and lager relative embankment scale produced more horizontal displacements in soft grounds. Especially, if thick soft grounds were placed, the relative embankment scale, which was given by the ratio of thickness of soft ground to the bottom width of embankments, became larger and in turn large horizontal displacement was produced. And also higher filling velocity of embankments induced more horizontal displacements in soft grounds. The other major factors affecting the lateral flow in soft ground were the thickness and undrained shear strength of soft grounds, the soil modulus and the stability number. Maximum horizontal displacement was induced by less undrained shear strength and soil modulus of soft grounds. Also more stability numbers produced more maximum horizontal displacements. When the shear deformation does not develop, the stability number was less than 3.0 and the safety factor of bearing was more than 1.7. However, if the stability number was more than 5.14 and the safety factor of bearing was less than 1.0, the unstable shear failure developed in soft ground. 50mm can be recommended as a criterion of the allowable maximum horizontal displacement to prevent the shear deformation in soft ground, while 100mm can be recommended as a criterion of the allowable maximum horizontal displacement to prevent the shear failure in soft ground.

Limitation of Measurement System in Application of Angular Distortion Criterion to Structure Near Road Embankment (도로 성토 시 인근 구조물에 각변위기준 적용에 있어 계측시스템의 한계성)

  • Kim, Taehyung;Kim, Dongin;Kim, Yuntae;You, Sangho;Jung, Youngeun;Kim, Sungwoung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.1
    • /
    • pp.43-51
    • /
    • 2014
  • Angular distortion due to differential settlement is one of the critical factors which influences on the stability and serviceability of a structure. The angular distortion criterion proposed by Bjerrum is generally used in practice. However, the measurement system used in field especially a road embankment site did not properly represent the angular distortion of a structure. The problem was related to the shortage and not proper installation of measurement gauges, and the incorrect understanding of the basic concept of angular distortion in interpretation of measurement data. These things were reveled by analyzing the measured data in the road embankment site. An improved measurement system has been suggested as a so-called "relative displacement measurement system" between columns with automatic measurement.

Dynamic-stability Evaluation of Unsaturated Road Embankments with Different Water Contents (함수비에 따른 불포화 도로성토의 동적 안정성 평가)

  • Lee, Chung-Won;Higo, Yosuke;Oka, Fusao
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.6
    • /
    • pp.5-21
    • /
    • 2014
  • It has been pointed out that the collapses of unsaturated road embankments caused by earthquake are attributed to high water content caused by the seepage of the underground water and/or the rainfall infiltration. Hence, it is important to study influences of water content on the dynamic stability and deformation mode of unsaturated road embankments for development of a proper design scheme including an effective reinforcement to prevent severe damage. This study demonstrates dynamic centrifugal model tests with different water contents to investigate the effect of water content on deformation and failure behaviors of unsaturated road embankments. Based on the measurement of displacement, the pore water pressure and the acceleration during dynamic loading, dynamic behavior of the unsaturated road embankments with about optimum water content and the higher water content than the optimum one have been examined. In addition, an image analysis has revealed the displacement field and the distributions of strains in the road embankment, by which deformation mode of the road embankment with higher water content has been clarified. It has been confirmed that in the case of higher water content the settlement of the crown is large mainly owing to the volume compression underneath the crown, while the small confining pressure at the toe and near the slope surface induces large shear deformation with volume expansion.

Design of Lightweight Fill Method on Soft Ground using Expanded Polystyrene (연약지반상 스치로폴 경량성토공법의 설계)

  • 유기송
    • Journal of the Korean Professional Engineers Association
    • /
    • v.27 no.5
    • /
    • pp.39-45
    • /
    • 1994
  • 스치로폴은 발포폴리스티렌(EPS : Expanded Poly-Styrene)을 말하며, 이것은 스티렌모노머(Stone Monomer)를 중합하여 만든 플리스티렌과 여기에 첨가한 발포제가 주원료로 되어 있다. 폴리스티렌은 1930년대에 미국과 독일에서 공업화되었고 스치로폴은 1943년 초에 미국에서 공업화가 이루어져 건물의 단열재, 물품포장재 등으로 이용되어 왔다. 1972년에는 노르웨이에서 연약지반상 교량의 접속도로 보수공사에 처음 스치로폴 성토공법이 이용되어 교대의 측방유동 방지대책으로 성공을 거둠에 따라 연약지반상의 경량성 토재 및 토압을 받는 옹벽, 교대 등 구조물의 경량 뒷채움재로서 각광을 받게 되었다. 한편 우리나라에서는 1994. 6월에 한국지반 공학회 주최로 개최된 "발포폴리스티렌(EPS) 이용 성토공법 국제심포지엄"에서 양산-구포간 고속도로성토(L=70m) 및 서해안고속도로의 교대 뒷채움에 스치로폴 경량성토재가 이용된 문헌이 발표된 바 있으며, 시중에서 단열재용으로 판매되고 있는 스티로폴 평판의 규격은 표 1과 같다. 스치로폴은 그 가격이 비싼 편이지만 단위중량(20-40kgf/m$^3$)이 흑의 50/1-100/1 밖에 안되는 초경량재로서 강도, 내구성 및 시공성이 우수한 성토용 신재료이기 때문에 연약지반상에서 구조물 시공시 지반의 과대한 침하, 측방유동 및 사면활동 등이 생길 경우 도로성 토재 또는 교대, 옹벽 등 구조물의 뒷채움재로서 스치로폴을 사용하면 이를 방지할 수 있으므로 매우 효과적인 토목자재라 할 수 있다. 따라서 본고에서는 지금까지의 연구결과, 시험시공 및 시공실적 등을 토대로 발표된 참고문헌을 중심으로 연약지반상 스치로폴 성토공법의 설계방법에 대하여 간단히 소개하고자 한다. 소개하고자 한다.

  • PDF