• 제목/요약/키워드: 도로포장용 콘크리트

Search Result 79, Processing Time 0.022 seconds

Laboratory Performance Evaluation of Alternative Dowel Bar for Jointed Concrete Pavements (콘크리트 포장용 고내구성 대체 다웰바의 실내공용성 평가)

  • Park, Seong Tae;Park, Jun Young;Lee, Jae Hoon;Kim, Hyung Bae
    • International Journal of Highway Engineering
    • /
    • v.15 no.1
    • /
    • pp.23-36
    • /
    • 2013
  • PURPOSES: The problem under this circumstance is that the erosion not only drops strength of the steel dowel bar but also comes with volume expansion of the steel dowel bar which can reduce load transferring efficiency of the steel dowel bar. To avoid this erosion problem, alternative dowers bars are developed. METHODS: In this study, the bearing stresses between the FRP tube dowel bar and concrete slab are calculated and compared with its allowable bearing stress to check its structural stability in the concrete pavement. These comparisons are conducted with several cross-sections of FRP tube dowel bars. Comprehensive laboratory tests including the shear load-deflection test on a full-scale specimen and the full-scale accelerated joint concrete pavement test are conducted and the results were compared with those from the steel dowel bar. RESULTS: In all cross-sections of FRP tube dowel bars, computed bearing stresses between the FRP tube dowel bar and concrete slab are less than their allowable stress levels. The pultrusion FRP-tube dowel bar show better performance on direct shear tests on full-scale specimen and static compression tests at full-scale concrete pavement joints than prepreg and filament-winding FRP-tube dowel bar. CONCLUSIONS: The FRP tube dowel bars as alternative dowel bar are invulnerable to erosion that may be caused by moisture from masonry joint or bottom of the pavement system. Also, the pultrusion FRP-tube dowel bar performed very well on the laboratory evaluation.

Properties of Cementless Loess Mortar Using Eco-Friendly Hardening Agent (친환경 무기질 고화재를 사용한 무시멘트 황토모르타르의 특성)

  • Jung, Yong-Wook;Kim, Sung-Hyun;Lee, Dong-Gyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.4
    • /
    • pp.355-365
    • /
    • 2015
  • This study examined the fluidity and strength properties, water resistance, durability, and freeze-thaw of cementless loess mortar using an eco-friendly hardening agent. The experimental result indicates that 28 days compressive and flexural strength of the loess mortar was increased regardless of the weathered granite soil and loess mixture ratio as the replacement ratio of the hardening agent increases. The strengths were significantly increased until 14 days regardless of the hardening agent, while the effect on the strengths increasement was relatively low after 14 days. Thus, the strength development of loess mortar concrete was found to be faster than that of the normal concrete. In addition, when the hardening agent of 10% was used, the average flexural strength was 1.7MPa which is insufficient compared to the 28-day flexural strength of 4.5MPa for the paving concrete. However, the flexural strengths of the loess mortar concrete using the hardening agents of 20% and 30% were 4.0MPa and 5.3MPa, respectively. Thus, the hardening agent need to be at least 20% so that the loess mortar can be used for paving concrete. The experiment for water resistance shows that the repeated absorption and dry reduced mass regardless of the mixing ratio of the loess. The maximum length change also decreased with increasing the substitution rate loess mixture ratio and the hardening agent. The result of the freeze-thaw resistance test indicates that the relative dynamic modulus of elasticity at 300 cycle freeze-thaw with the hardening agents of 20% and 30% were 75% and 79%, relatively. Thus, the hardening agent of at least 20% is required to obtain the relative dynamic modulus of elasticity of 60% for the loess mortar.

Reliability Analysis of Composite Girder Designed by LRFD Method for Positive Flexure (하중저항계수설계법(LRFD)으로 설계된 강합성 거더의 휨에 대한 신뢰도해석)

  • Shin, Dong-Ku;Kim, Cheon-Yong;Paik, In-Yeol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3A
    • /
    • pp.539-546
    • /
    • 2006
  • The reliability analysis of simply-supported composite plate girder and box girder bridges under positive flexure is performed. The bridges are designed based on the AASHTO-LRFD specification. A performance function for flexural failure is expressed as a function of such random variables as flexural resistance of composite section and design moments due to permanent load and live load. For the flexural resistance, the statistical parameters obtained by analyzing over 16,000 samples of domestic structural steel products are used. Several different values of statistical parameters with the bias factor in the range of 0.95-1.05 and the coefficient of variation in the range of 0.15-0.25 are used for the live-load moment. Due to the lack of available domestic measured data on the dead load moment, the same values of statistical properties used in the calibration of AASHTO-LRFD are applied. The reliability indices for the composite plate girder and box girder bridges with various span lengths are calculated by applying the Rackwitz-Fiessler technique.

A Study on the Gradation Effect of the Property of Roller Compacted Concrete Pavement (골재 입도분포가 도로포장용 롤러전압 콘크리트에 미치는 영향 연구)

  • Song, Si Hoon;Lee, Seung Woo
    • International Journal of Highway Engineering
    • /
    • v.17 no.3
    • /
    • pp.49-58
    • /
    • 2015
  • PURPOSES : The use of environmentally friendly construction methods has been recently encouraged to reduce fuel consumption and the effects of global warming. For this purpose, the roller compacted concrete pavement (RCCP) construction method has been developed. RCCP is more environmentally friendly and economically efficient than general concrete by reducing the amount of CO2 generated through the application of a smaller amount of cement. RCCP has a number of advantages such as an easy construction method, low cost, high structural hydration performance, and aggregate interlocking. However, mix design standards and construction guidelines of RCCP are required for domestic application. In addition, a study on aggregate selection, which has an effect on the characteristics of RCCP, is necessary owing to a limited number of researches. Thus, the aggregate effect on the performance of RCCP in securing the required strength and workability was evaluated in consideration of domestic construction. METHODS : Sand and coarse aggregates of both 19mm and 13mm in maximum size were used in this study. Four types of aggregate gradations (s/a = 30%, 58%, and 70% for the sand and coarse aggregate of 19mm in maximum size, and s/a = 50% for a combination of the three types of aggregates) were set up to investigate the effects of the PCA band on the RCC characteristics. The conditions of s/a = 30% and 70% were evaluated to check the gradation effect outside of the recommended band. The conditions of s/a = 58% and 50% were used because they are the optimum combination of the two and three types of aggregates, respectively. RCCP gradation band was suggested gradation with a proper construction method of RCCP by synthetically comparing and analyzing the correlation of optimum water content, maximum dry density, and strength of requirements through its consistency and compaction test. RESULTS : The lower and upper limit lines are insufficient to secure a relatively strong development and workability compared to an aggregate gradation in the RCCP gradation band region. On the other hand, the line in the RCCP gradation band and the 0.45 power curve in the RCCP gradation band region were satisfactory, ensuring the required strength and workability. CONCLUSIONS : The suitable aggregate gradation on RCCP process should meet the RCCP gradation band area; however, fine particles passing through a #60 sieve do not need to be within the recommended gradation band because the influence of this region on such fine particles is small.

Application of DC Resistivity Survey from Upper Portion of Concrete and Geostatistical Integrated Analysis (콘크리트 상부에서 전기비저항 탐사 적용 및 지구통계학적 복합 해석)

  • Lee, Heuisoon;Oh, Seokhoon;Chung, Hojoon;Noh, Myounggun;Ji, Yoonsoo;Ahn, Taegyu;Song, Sung-Ho;Yong, Hwan-Ho
    • Journal of the Korean earth science society
    • /
    • v.35 no.1
    • /
    • pp.29-40
    • /
    • 2014
  • A DC resistivity survey was performed to detect anomalies beneath concrete pavement. A set of high conductive media and planar electrodes were used to lessen the effect's a high contact resistance of concrete. Results of the resistivity survey were analyzed and compared with those of other geophysical surveys such as Ground Penetration Radar (GPR), Impulse Response (IR), and Multi-channel Analysis of Surface Waves (MASW), which were carried out in the same location. The results of resistivity survey showed a high resistive distribution in the section of sink and pavement where a pattern of reinforcement was observed through the GPR survey. Also, a comparison of results between the IR and resistivity surveys indicated that the high resistivity was produced by the high dynamic stiffness in the reinforced section. The co-Kriging of both the results of DC resistivity and MASW surveys at the same location showed that an integrated geostatistical analysis is able to give more accurate description on the anomalous subsurface region than can a separate analysis of each geophysical approach. This study suggests that the integrated geostatistical approaches were used for a decision-making process based on the geophysical surveys.

Reliability Analysis of Single and Continuous Span Composite Plate and Box Girder Designed by LRFD Method under Flexure (LRFD법으로 설계된 단경간 및 연속경간 강합성 플레이트 거더 및 박스 거더의 휨에 대한 신뢰도해석)

  • Shin, Dong Ku;Roh, Joon Sik;Cho, Eun Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.1
    • /
    • pp.183-193
    • /
    • 2008
  • The reliability analysis of simply-supported and continuous composite plate girder and box girder bridges under flexure was performed to provide a basic data for the development of LRFD c ode. The bridges were designed based on LRFD specification with newly proposed design live load which was developed by analyzing traffic statistics from highways and local roads. A performance function for flexural failure was expressed as a function of the flexural resistance of composite section and the design moments due to permanent load and live load. For the flexural resistance, the statistical parameters obtained by analyzing over 16,000 domestic structural steel samples were used. Several different values of bias factors for the live load moment from 1.0 to 1.2 were used. Due to the lack of available domestic measured data on the moment by permanent loads, the same statistical properties used in the calibration of ASHTO-LRFD were ap plied. The reliability indices for the composite girder bridges with various span lengths, different live load factors, and bias fact or for the live load were obtained by applying the Rackwitz-Fiessler technique.

Evaluation for Application of Warm-mix Asphalt Concrete for Rural Road Pavement (농촌 도로 포장용 준고온 아스팔트 콘크리트 적용 평가)

  • Lee, Sungjin;Kim, Kwang W.;Kim, Sungun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.2
    • /
    • pp.41-50
    • /
    • 2021
  • The asphalt pavement industry has introduced the warm-mix asphalt (WMA) as a mean of energy saving and environmentally safe technology, because the WMA mixture can be mixed and compacted at 30℃ lower than conventional hot-mix asphalt (HMA) at 160℃ or higher. The implementation of WMA can be a good option for paving operations for rural road in remote place, not only due to energy saving and environmental issues, but also lower working temperature. Using WMA technology, the cooled-down asphalt mixture can be still compacted to meet the quality requirement in narrow winding rural road in remote places. Therefore, this study is designed to evaluate engineering properties of WMA binders and concretes, which were prepared for rural road pavement. The objective of the study was to evaluate and suggest proper fundamental properties level of the WMA concrete for rural road pavement. The kinematic viscosity test result indicated that the WMA binders used in this study were effective for compaction at lower temperature, i.e., at 115℃, compared to the HMA binder. According to strength property analyses, it was found that the WMA concrete was acceptable for rural road pavement even though it was compacted at 30℃ lower level. Since the deformation strength (SD) of 3.2 MPa was found to satisfy rutting and cracking resistance minimum guidelines, this value was suggested as a minimum SD value for rural road pavement, considering lack of maintenance program for rural area.

Effect of Environmental Conditions on Expansion of Mortar-bar by Alkali-Silica Reaction (환경조건이 알칼리-실리카 반응에 의한 모르타르 봉 길이 팽창에 미치는 영향)

  • Kim, Seong-Kwon;Yun, Kyong-Ku;Hong, Seung-Ho;Kang, Moon-Sik
    • International Journal of Highway Engineering
    • /
    • v.13 no.3
    • /
    • pp.1-6
    • /
    • 2011
  • The possibility of ASR(alkali-silica reaction) for coarse aggregates had known to be low up to recently in Korea. But the distress of ASR was identified and reported by ASTM C 1260 test. The purpose of this paper was to identify the effect of environmental conditions on length expansion of mortar-bar by alkali-silica reaction with KS F 2546 and ASTM C 1260 test. The results of this study were as following; The result of KS F 2546 test for five kinds of aggregates shows that all of them are non-reactive. But that of ASTM C 1260 test shows that all of aggregates except Andesite-2 are over possible reactive because of environmental condition such as external alkali ion by 1N NaOH, high temperature and humidity. The result of variety of NaOH concentration on ASTM C 1260 using Siltstone indicates that length expansion rate increases highly as NaOH concentration increases. And, comparison results of KS F 2546 for Siltstone with that of 0.00N NaOH experiment indicates that length expansion rate increases as temperature and humidity increases.

Evaluation of Adhesion Characteristics of Crack Sealants Used in Asphalt Concrete Pavement (아스팔트 콘크리트 포장용 균열실링재의 부착특성 평가)

  • Lee, Jae-Jun;Kim, Seung-Hoon;Baek, Jong-Eun;Lim, Jae-Kyu;Kim, Yong-Joo
    • International Journal of Highway Engineering
    • /
    • v.17 no.2
    • /
    • pp.55-62
    • /
    • 2015
  • Cracking is an inevitable fact of asphalt concrete pavements and plays a major role in pavement deterioration. Pavement cracking is one of the main factors determining the frequency and method of repair. Cracks can be treated with a number of preventative maintenance actions, including overlay surface treatments such as slurry sealing, crack sealing, or crack filling. Pavement cracks can show up as one or all of the following types: transverse, longitudinal, fatigue, block, reflective, edge, and slippage. Crack sealing is a frequently used pavement maintenance treatment because it significantly extends the pavement service life. However, crack sealant often fails prematurely due to a loss of adhesion. Because current test methods are mostly empirical and only provide a qualitative measure of the bond strength, they cannot accurately predict the adhesive failure of the sealant. This study introduces a laboratory test aimed at assessing the bonding of hot-poured crack sealant to the walls of pavement cracks. A pneumatic adhesion tensile testing instrument (PATTI) was adopted to measure the bonding strength of the hot-poured crack sealant as a function of the curing time and temperature. Based on a limited number of test results, the hot-poured crack sealants have very different bonding performances. Therefore, this test method can be proposed as part of a newly developed performance-based standard specification for hot-poured crack sealants for use in the future. PURPOSES : The purpose of this study was to evaluate both the adhesion and failure performance of a crack sealant as a function of its curing time and curing temperature. METHODS: A pneumatic adhesion tensile testing instrument (PATTI) was adopted to measure the adhesion performance of a crack sealant as a function of the curing time and curing temperature. RESULTS: With changes in the curing time, curing temperature, and sealant type, the bond strengths were found to be significantly different. Also, higher bond strengths were measured at lower temperatures. Different sealant types produced completely different bond strengths and failure behaviors. CONCLUSIONS: The bonding strength of an evaluated crack sealant was shown to differ depending on various factors. Two sealant types, which were composed of different raw materials, were shown to perform differently. The newly proposed test offers the possibility of evaluating and differentiating between different crack sealants. Based on alimited number of test results, this test method can be proposed as part of a newly developed performance-based standard specification for crack sealants or as part of a guideline for the selection of hot-poured crack sealant in the future.