• Title/Summary/Keyword: 데이터 증강 기법

Search Result 199, Processing Time 0.039 seconds

Dataset Augmentation Technique for Crack Detection of Wood Building (목조건물 크랙 감지를 위한 데이터셋 증강 기법)

  • Kim, Beom-Jun;Kim, Inki;Lim, Hyunseok;Gwak, Jeonghwan
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.645-647
    • /
    • 2021
  • 본 논문에서는 목조건물의 Crack만을 움직여 Data set을 증강하는 기법을 제안한다. 이 기법은 이미지 내 Crack Detection의 학습 데이터를 만들기 위해 이미지의 전체적인 값으로 Flip, Rotation, Shift, Rescale 등의 변환을 통해 Data Augmentation을 진행하는 대신 Crack이라는 하나의 Object만을 가지고 새로운 데이터를 생성한다. 이때 Object는 관심 영역 내에서만 연산되어 기존의 방법보다 더욱 많은 데이터를 얻을 수 있으며, Crack이 관심 영역 밖으로 이동하지 않기 때문에 이상치 혹은 결측치가 존재하지 않는 데이터를 얻을 수 있다. 또한 Crack이 존재하지 않는 이미지에도 임의적으로 Crack을 생성하여 새로운 데이터를 만들 수 있다. 결론적으로 본 논문에서는 Crack Detection의 학습을 위하여 기존 방법보다 우수한 성능의 Data Augmentation을 제안하였다.

  • PDF

An Displacement Detection Model in Cultural Asset Images using Object-centric Augmentation (객체 중심 증강 기법을 사용한 목조 문화재 영상에서의 변위 감지 모델)

  • Kang, Jaeyong;Kim, Inki;Lim, Hyunseok;Gwak, Jeonghwan
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.137-139
    • /
    • 2021
  • 본 논문에서는 목조 문화재 영상에서의 변위를 효율적으로 감지하기 위한 객체 중심 증강 기법을 사용한 모델을 제안한다. 우선 객체 중심 증강 기법을 적용하여 변위 객체들이 이미지 공간상의 어느 곳이든 위치할 수 있게끔 데이터를 구성한 이후 사전 학습된 합성 곱 신경망을 사용하여 입력 이미지에 대한 심층 특징 벡터를 추출한다. 그 이후 심층 특징 벡터는 완전 연결 계층의 입력 값으로 들어와서 최종적으로 변위가 존재하는지 아닌지에 대한 예측을 수행하게 된다. 데이터 셋으로는 충주시 근처의 문화재에 방문해서 수집한 목조 문화재 이미지를 가지고 정상 및 비정상으로 구분한 데이터 셋을 사용하였다. 실험 결과 우리가 제안한 객체 중심 증강 기법을 사용한 모델이 객체 중심 증강 기법을 사용하지 않은 모델보다 목조 문화재에서 변위 영역을 더 잘 감지함을 확인하였다. 이러한 결과로부터 우리가 제안한 방법이 목재 문화재의 변위 검출에 있어서 매우 적합함을 보여준다.

  • PDF

A Study on Synthesizing Training Data for One-stage Object Detector (단일 단계 검출 방법을 위한 이미지 합성기반 학습 데이터 증강에 관한 연구)

  • Lee, Seon-Gyeong;Jeong, Chi Yoon;Moon, KyeongDeok;Kim, Chae-Kyu
    • Annual Conference of KIPS
    • /
    • 2020.05a
    • /
    • pp.446-450
    • /
    • 2020
  • 딥러닝 기반의 영상 분석 방법들은 많은 양의 학습 데이터가 필요하며, 학습 데이터 구축에는 많은 시간과 노력이 소요된다. 특히 객체 검출 분야의 경우 영상 내 객체의 위치, 크기, 범주 등의 정보가 모두 필요하여 학습 데이터 구축에 더 많은 어려움이 있으며, 이를 해결하기 위해 최근 이미지 합성기반 데이터 증강에 관한 연구가 활발히 진행되고 있다. 이미지 합성기반 데이터 증강 방법은 배경 영상에 객체를 합성할 때 객체와 배경 영상이 접한 영역에서 아티팩트(Artifact)가 발생하며, 이는 객체 검출 모델이 아티팩트를 객체의 특징으로 모델링하여 검출 성능이 저하되는 원인이 된다. 이러한 문제를 해결하기 위하여 본 논문에서는 양방향 필터 기반의 이미지 합성 방법을 제안하고, 단일 단계 검출의 대표적인 방법인 RetinaNet을 이용하여 이미지 합성기반 데이터 증강 방법의 성능을 분석하였다. 공개 데이터셋에 대한 실험 결과 본 논문에서 사용한 단일 검출 방법 및 데이터 증강 기법을 사용하면 더 적은 양의 증강 데이터로 기존 방법과 동일한 성능을 보여주는 것을 확인하였다.

Prompt-based Data Augmentation for Generating Personalized Conversation Using Past Counseling Dialogues (과거 상담대화를 활용한 개인화 대화생성을 위한 프롬프트 기반 데이터 증강)

  • Chae-Gyun Lim;Hye-Woo Lee;Kyeong-Jin Oh;Joo-Won Sung;Ho-Jin Choi
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.209-213
    • /
    • 2023
  • 최근 자연어 이해 분야에서 대규모 언어모델 기반으로 프롬프트를 활용하여 모델과 상호작용하는 방법이 널리 연구되고 있으며, 특히 상담 분야에서 언어모델을 활용한다면 내담자와의 자연스러운 대화를 주도할 수 있는 대화생성 모델로 확장이 가능하다. 내담자의 상황에 따라 개인화된 상담대화를 진행하는 모델을 학습시키려면 동일한 내담자에 대한 과거 및 차기 상담대화가 필요하지만, 기존의 데이터셋은 대체로 단일 대화세션으로 구축되어 있다. 본 논문에서는 언어모델을 활용하여 단일 대화세션으로 구축된 기존 상담대화 데이터셋을 확장하여 연속된 대화세션 구성의 학습데이터를 확보할 수 있는 프롬프트 기반 데이터 증강 기법을 제안한다. 제안 기법은 기존 대화내용을 반영한 요약질문 생성단계와 대화맥락을 유지한 차기 상담대화 생성 단계로 구성되며, 프롬프트 엔지니어링을 통해 상담 분야의 데이터셋을 확장하고 사용자 평가를 통해 제안 기법의 데이터 증강이 품질에 미치는 영향을 확인한다.

  • PDF

Improving Performance of Sentiment Classification using Korean Style Transfer based Data Augmentation (한국어 스타일 변환 기반 데이터 증강을 이용한 감성 분류 성능 향상)

  • Eunwoo Go;Eunchan Lee;Sangtae Ahn
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.480-484
    • /
    • 2022
  • 텍스트 분류는 입력받은 텍스트가 어느 종류의 범주에 속하는지 구분하는 것이다. 분류 모델에 있어서 좋은 성능을 나타내기 위해서는 충분한 양의 데이터 셋이 필요함을 많은 연구에서 보이고 있다. 이에 따라 데이터 증강기법을 소개하는 많은 연구가 진행되었지만, 실제로 사용하기 위한 모델에 곧바로 적용하기에는 여러 가지 문제점들이 존재한다. 본 논문에서는 데이터 증강을 위해 스타일 변환 기법을 이용하였고, 그 결과 기존 방법 대비 한국어 감성 분류의 성능을 높였다.

  • PDF

Dataset Augmentation on Fallen Person Objects in a Autonomous Driving Tractor Environment (자율주행 트랙터 환경에서 쓰러진 사람에 대한 데이터 증강)

  • Hwapyeong Baek;Hanse Ahn;Heesung Chae;Yongwha Chung
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.553-556
    • /
    • 2023
  • 데이터 증강은 데이터 불균형 문제를 해결하기 위해 일반화 성능을 향상시킨다. 이는 과적합 문제를 해결하고 정확도를 높이는 데 도움을 준다. 과적합을 해결하기 위해서 본 논문에서는 분할 마스크 라벨링을 자동화하여 효율성을 높이고, RoI를 활용한 분할 Copy-Paste 데이터 증강 기법을 제안한다. 본 논문의 제안 방법을 적용한 결과 YOLOv8 모델에서 기존의 분할, 박스 Copy-Paste 데이터 증강 기법과 비교해서 쓰러진 사람 객체에 대한 정확도가 10.2% 증가함으로써 제안한 방법이 일반화 성능을 높이는 데 효과가 있음을 확인하였다.

Style-Generative Adversarial Networks for Data Augmentation of Human Images at Homecare Environments (조호환경 내 사람 이미지 데이터 증강을 위한 Style-Generative Adversarial Networks 기법)

  • Park, Changjoon;Kim, Beomjun;Kim, Inki;Gwak, Jeonghwan
    • Annual Conference of KIPS
    • /
    • 2022.11a
    • /
    • pp.565-567
    • /
    • 2022
  • 질병을 앓고 있는 환자는 상태에 따라 병실, 주거지, 요양원 등 조호환경 내 생활 시 의료 인력의 지속적인 추적 및 관찰을 통해 신체에 이상이 생긴 경우 이를 감지하고, 신속하게 조치할 수 있도록 해야 한다. 의료 인력이 직접 환자를 확인하는 방법은 의료 인력의 반복적인 노동이 요구되며 실시간으로 환자를 확인해야 한다는 특성상 의료 인력이 상주해야 하기에 이는 곧, 의료 인력의 부족과 낭비로 이어진다. 해당 문제 해결을 위해 의료 인력을 대신하여 조호환경 내 환자의 상태를 실시간으로 모니터링할 수 있는 딥러닝 모델들이 연구되고 있다. 딥러닝 모델은 데이터의 수가 많을수록 강인한 모델을 설계할 수 있으며, 데이터셋의 배경, 객체의 특징 분포 등 다양한 조건에 영향을 받기 때문에 학습에 필요한 도메인을 가지는 많은 양의 전처리된 데이터를 수집해야 한다. 따라서, 조호환경 내 환자에 대한 데이터셋이 필요하지만, 공개된 데이터셋의 경우 양이 매우 적으며 이를 반전, 회전기법 등을이용할 경우 데이터의 수를 늘릴 수 있지만, 같은 분포의 특징을 가지는 데이터가 생성되기에 데이터 증강 기법을 단순하게 적용하면 딥러닝 모델의 과적합을 야기한다. 또한, 조호환경 내 이미지 데이터셋은 얼굴 노출과 같은 개인정보가 포함 될 수 있으며 이를 보호하기 위해 정보들을 비식별화 해야 한다는 문제점이 있다. 따라서 본 논문에서는 조호환경에서 수집된 데이터 증강을 위한 Style-Generative Adversarial Networks 기법을 적용하여 조호환경 데이터셋 수집에 효과적인 증강 기법을 제안한다.

Automatic Augmentation Technique of an Autoencoder-based Numerical Training Data (오토인코더 기반 수치형 학습데이터의 자동 증강 기법)

  • Jeong, Ju-Eun;Kim, Han-Joon;Chun, Jong-Hoon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.5
    • /
    • pp.75-86
    • /
    • 2022
  • This study aims to solve the problem of class imbalance in numerical data by using a deep learning-based Variational AutoEncoder and to improve the performance of the learning model by augmenting the learning data. We propose 'D-VAE' to artificially increase the number of records for a given table data. The main features of the proposed technique go through discretization and feature selection in the preprocessing process to optimize the data. In the discretization process, K-means are applied and grouped, and then converted into one-hot vectors by one-hot encoding technique. Subsequently, for memory efficiency, sample data are generated with Variational AutoEncoder using only features that help predict with RFECV among feature selection techniques. To verify the performance of the proposed model, we demonstrate its validity by conducting experiments by data augmentation ratio.

Data Augmentation Techniques for Deep Learning-Based Medical Image Analyses (딥러닝 기반 의료영상 분석을 위한 데이터 증강 기법)

  • Mingyu Kim;Hyun-Jin Bae
    • Journal of the Korean Society of Radiology
    • /
    • v.81 no.6
    • /
    • pp.1290-1304
    • /
    • 2020
  • Medical image analyses have been widely used to differentiate normal and abnormal cases, detect lesions, segment organs, etc. Recently, owing to many breakthroughs in artificial intelligence techniques, medical image analyses based on deep learning have been actively studied. However, sufficient medical data are difficult to obtain, and data imbalance between classes hinder the improvement of deep learning performance. To resolve these issues, various studies have been performed, and data augmentation has been found to be a solution. In this review, we introduce data augmentation techniques, including image processing, such as rotation, shift, and intensity variation methods, generative adversarial network-based method, and image property mixing methods. Subsequently, we examine various deep learning studies based on data augmentation techniques. Finally, we discuss the necessity and future directions of data augmentation.

Data Augmentation Scheme for Semi-Supervised Video Object Segmentation (준지도 비디오 객체 분할 기술을 위한 데이터 증강 기법)

  • Kim, Hojin;Kim, Dongheyon;Kim, Jeonghoon;Im, Sunghoon
    • Journal of Broadcast Engineering
    • /
    • v.27 no.1
    • /
    • pp.13-19
    • /
    • 2022
  • Video Object Segmentation (VOS) task requires an amount of labeled sequence data, which limits the performance of the current VOS methods trained with public datasets. In this paper, we propose two effective data augmentation schemes for VOS. The first augmentation method is to swap the background segment to the background from another image, and the other method is to play the sequence in reverse. The two augmentation schemes for VOS enable the current VOS methods to robustly predict the segmentation labels and improve the performance of VOS.