• 제목/요약/키워드: 데이터 증강

검색결과 494건 처리시간 0.026초

의료영상 분류를 위한 심층신경망 훈련에서 StyleGAN 합성 영상의 데이터 증강 효과 분석 (Data Augmentation Effect of StyleGAN-Generated Images in Deep Neural Network Training for Medical Image Classification)

  • 이한상;우아라;홍헬렌
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제30권4호
    • /
    • pp.19-29
    • /
    • 2024
  • 본 논문에서는 의료 영상 분류를 위한 심층 신경망 훈련에서 StyleGAN 합성 영상의 데이터 증강 효과를 분석한다. 이를 위해 흉부 X선 영상에서의 폐렴 진단과 복부 CT 영상에서의 간전이암 분류 문제에서 StyleGAN 합성 영상을 이용하여 VGG-16 심층 합성곱 신경망 훈련을 수행한다. 실험에서 분류 결과에 대한 정량적, 정성적 분석을 통해 StyleGAN 데이터 증강이 특징 공간에서 클래스 외곽을 확장하는 특성을 보이며, 이와 같은 특성으로 인해 실제 영상과의 적절한 비율을 통해 혼합했을 때 분류 성능이 개선될 수 있음을 확인하였다.

Text Augmentation Using Hierarchy-based Word Replacement

  • Kim, Museong;Kim, Namgyu
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권1호
    • /
    • pp.57-67
    • /
    • 2021
  • 최근 딥 러닝(Deep Learning) 분석에 이질적인 데이터를 함께 사용하는 멀티모달(Multi-modal) 딥러닝 기술이 많이 활용되고 있으며, 특히 텍스트로부터 자동으로 이미지를 생성해내는 Text to Image 합성에 관한 연구가 활발하게 수행되고 있다. 이미지 합성을 위한 딥러닝 학습은 방대한 양의 이미지와 이미지를 설명하는 텍스트의 쌍으로 구성된 데이터를 필요로 하므로, 소량의 데이터로부터 다량의 데이터를 생성하기 위한 데이터 증강 기법이 고안되어 왔다. 텍스트 데이터 증강의 경우 유의어 대체에 기반을 둔 기법들이 다수 사용되고 있지만, 이들 기법은 명사 단어의 유의어 대체 시 이미지의 내용과 상이한 텍스트를 생성할 가능성이 있다는 한계를 갖는다. 따라서 본 연구에서는 단어가 갖는 품사별 특징을 활용하는 텍스트 데이터 증강 방안, 즉 일부 품사에 대해 단어 계층 정보를 활용하여 단어를 대체하는 방안을 제시하였다. 또한 제안 방법론의 성능을 평가하기 위해 MSCOCO 데이터를 사용하여 실험을 수행하여 결과를 제시하였다.

오토인코더 기반 수치형 학습데이터의 자동 증강 기법 (Automatic Augmentation Technique of an Autoencoder-based Numerical Training Data)

  • 정주은;김한준;전종훈
    • 한국인터넷방송통신학회논문지
    • /
    • 제22권5호
    • /
    • pp.75-86
    • /
    • 2022
  • 본 연구는 딥러닝 기반 변분 오토인코더(Variational Autoencoder)를 활용하여 수치형 학습데이터 내 클래스 불균형 문제를 해결하고, 학습데이터를 증강하여 학습모델의 성능을 향상시키고자 한다. 우리는 주어진 테이블 데이터에 대하여 인위적으로 레코드 개수를 늘리기 위해 'D-VAE'을 제안한다. 제안 기법은 최적의 데이터 증강을 지원하기 위해 우선 이산화와 특징선택을 수반한 전처리 과정을 수행한다. 이산화 과정에서 k-means 클러스터링을 적용하여 그룹화한 후, 주어진 데이터가 원-핫 인코딩(one-hot encoding) 기법으로 원-핫 벡터(one-hot vector)로 변환한다. 이후, 특징 선택 기법 중 RFECV 기법을 활용하여 예측에 도움이 되는 변수를 가려내고, 이에 대해서만 변분 오토인코더를 활용하여 새로운 학습데이터를 생성한다. 제안 기법의 성능을 검증하기 위해 4가지 유형의 실험 데이터를 활용하여 데이터 증강 비율별로 그 유효성을 입증한다.

딥러닝 기반의 대퇴골 영역 분할을 위한 훈련 데이터 증강 연구 (Data Augmentation Method for Deep Learning based Medical Image Segmentation Model)

  • 최규진;신주연;경주현;경민호;이윤진
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제25권3호
    • /
    • pp.123-131
    • /
    • 2019
  • 본 연구에서는 CT 영상의 대퇴골 부위를 해부학적으로 의미 있게 변형하여 CT 영상의 대퇴골 영역을 분할하기 위한 컨벌루션 신경망(CNN)의 훈련 데이터를 증강하는 방법을 제안한다. 먼저 CT 영상으로부터 삼차원 삼각형 대퇴골 메쉬를 얻는다. 그 후 메쉬의 국소부위에 대한 기하학적 특성을 계산하고, 군집화하여 메쉬를 의미 있는 부분들로 분할한다. 마지막으로, 분할한 부분들을 적절한 알고리즘으로 변형한 뒤, 이를 바탕으로 CT 영상을 와핑하여 새로운 CT영상을 생성하였다. 본 연구의 데이터 증강 방법을 이용하여 학습시킨 딥러닝 모델은 기하학적 변환이나 색상 변환 같이 일반적으로 사용되는 데이터 증강법과 비교하여 더 나은 영상분할 성능을 보인다.

가상·증강현실을 활용한 에듀테크 동향 분석 (Analysis of Edu-Tech Trends Using Virtual and Augmented Reality)

  • 황의철
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제63차 동계학술대회논문집 29권1호
    • /
    • pp.115-116
    • /
    • 2021
  • 5세대(5G) 이동통신망의 보급과 코로나19 여파로 비대면 시대가 열리면서 가상 증강현실(VR·AR)을 기반으로 한 '실감(XR·Extended Reality)경제가 본격화 되었다. 가상증강현실의 적용분야로는 게임·영화 등 엔터테인먼트, 제조업, 쇼핑 및 전자상거래, 병원·의료기기, 고객서비스, 지식서비스교육 분야 등이 있다. 본 논문은 VR·AR&교육콘텐츠를 키워드로 최근 3년(2018.1.1.~2020.12.31.)간 중앙지, 경제지 등 54개 언론사 기사를 빅카인즈와 데이터랩을 이용하여 관계도 분석, 월간 키워드 트렌드, 연관어 분석을 하였다. 'VR, AR, 에듀테크'를 키워드로 뉴스 검색결과 63,959건 중 '에듀테크' 검색결과 2018년 632건, 2019년 1043건, 2020년 2389건으로 해마다 급 상승하였다. '(AR+VR)AND 교육콘텐츠'에 대한 검색 결과 연관성(키워드 빈도수)이 높은 키워드로는 증강현실(120), 가상현실(116), 인공지능(114), 에듀테크(100), 코로나19(66), 실감형(65), 아이들(61), VR·AR(56), ICT(35), 빅데이터(25) 순으로 가상·증강현실 기술 발전, 코로나19의 장기화, 교육의 효율성으로 에듀테크 분야의 활용도가 급격히 증가함을 확인할 수 있었다.

  • PDF

MOO(Mathematical Operation Organizer): 한국어 서술형 수학 문제 자동 풀이를 위한 데이터 증강 기법 연구 (MOO: A Study on Data Augmentation Method for Korean Math Word Problem Solving)

  • 안지수;기경서;김지원;권가진
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 춘계학술발표대회
    • /
    • pp.568-571
    • /
    • 2022
  • 본 논문에서는 서술형 수학 문제의 자동 풀이 기술 개발을 위한 데이터 증강 기법인 MOO 를 제안한다. 서술형 수학 문제는 일상에서의 상황을 수학적으로 기술한 자연어 문제로, 인공지능 모델로 이 문제를 풀이하는 기술은 활용 가능성이 높아 국내외에서 다양하게 연구되고 있으나 데이터의 부족으로 인해 성능 향상에서의 한계가 늘 존재해 왔다. 본 논문은 이를 해결하기 위해 시중의 수학 문제들을 수집하여 템플릿을 구축하고, 템플릿에 적합한 풀이계획을 생성할 수 있는 중간 언어인 MOOLang 을 통해 생성된 문제에 대응하는 Python 코드 형태의 풀이와 정답을 생성할 수 있는 데이터 증강 방법을 고안하였다. 이 기법을 통해 생성된 데이터로 기존의 최고 성능 모델인 KoEPT를 통해 학습을 시도해본 결과, 생성된 데이터셋을 통해 모델이 원활하게 데이터셋의 분포를 학습할 수 있다는 것을 확인하였다.

증강현실 서비스를 위한 메타데이터 스키마 구조 (Architecture of Metadata Schema for Augmented Reality Service)

  • 박제호;이용환;김영섭
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2014년도 추계학술대회
    • /
    • pp.84-85
    • /
    • 2014
  • 실제적인 객체를 컴퓨터로 재구성하여 실제 공간에서의 경험 대상을 가상 세계의 경험 대상으로 변환하여 실제 세계와의 혼합된 세계를 제공하는 증강현실 실제 세상과 정보 전달에 필요한 증강현실 객체를 혼합하여 제공한다. 이러한 가상객체가 존재하는 환경은 컴퓨터를 이용하여 실제 객체를 인식하여 표현할 뿐만 아니라 제공된 입력 자료에 상응하는 서비스를 제공하게 된다. 본 논문에서는 증강현실 시스템을 지원하기 위한 정보를 체계적으로 표현하고 전달체계에 이용되는 메타데이터를 구성하기 위한 구조적 모델을 제시한다.

  • PDF

Text to SPARQL을 위한 지식 증강 프롬프팅 연구 (Study on Knowledge Augmented Prompting for Text to SPARQL)

  • 이연진;남정재;김우영;김우주
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.185-189
    • /
    • 2023
  • Text to SPARQL은 지식 그래프 기반 질의응답의 한 형태로 자연어 질문을 지식 그래프 검색 쿼리로 변환하는 태스크이다. SPARQL 쿼리는 지식 그래프의 정보를 기반으로 작성되어야 하기 때문에 기존 언어 모델을 통한 코드 생성방법으로는 잘 동작하지 않는다. 이에 우리는 거대 언어 모델을 활용하여 Text to SPARQL를 해결하기 위해 프롬프트에 지식 그래프의 정보를 증강시켜주는 방법론을 제안한다. 이에 더하여 다국어 정보 활용에 대한 영향을 검증하기 위해 한국어, 영어 각각의 레이블을 교차적으로 실험하였다. 추가로 한국어 Text to SPARQL 실험을 위하여 대표적인 Text to SPARQL 벤치마크 데이터셋 QALD-10을 한국어로 번역하여 공개하였다. 위 데이터를 이용해 지식 증강 프롬프팅의 효과를 실험적으로 입증하였다.

  • PDF

IHO S-100기반 e-Navigation 항행정보지원시스템의 개발

  • 김웅규
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2014년도 추계학술대회
    • /
    • pp.225-226
    • /
    • 2014
  • 향후 차세대 전자해도 뿐만 아니라 다양한 S-10x 데이터 및 서비스, S-100 표준 기반의 e-Navigation 정보, 항로표지 정보가 개발될 것으로 예상 된다. 이 연구에서는 S-100표준 기반의 S-10x 시험데이터 및 시험환경 구축, 차세대 ECDIS와 증강현실 정보표시 시스템 및 On-Shore 차세대 항행정보 지원 시스템으로 구성되는 차세대 항행정보 지원 시스템을 개발 중에 있다.

  • PDF

고차원 기계 독해를 위한 모델 훈련 및 데이터 증강 방안 (Model Training and Data Augmentation Schemes For the High-level Machine Reading Comprehension)

  • 이정우;문현석;박찬준;임희석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.47-52
    • /
    • 2021
  • 최근 지문을 바탕으로 답을 추론하는 연구들이 많이 이루어지고 있으며, 대표적으로 기계 독해 연구가 존재하고 관련 데이터 셋 또한 여러 가지가 공개되어 있다. 그러나 한국의 대학수학능력시험 국어 영역과 같은 복잡한 구조의 문제에 대한 고차원적인 문제 해결 능력을 요구하는 데이터 셋은 거의 존재하지 않는다. 이로 인해 고차원적인 독해 문제를 해결하기 위한 연구가 활발히 이루어지고 있지 않으며, 인공지능 모델의 독해 능력에 대한 성능 향상이 제한적이다. 기존의 입력 구조가 단조로운 독해 문제에 대한 모델로는 복잡한 구조의 독해 문제에 적용하기가 쉽지 않으며, 이를 해결하기 위해서는 새로운 모델 훈련 방법이 필요하다. 이에 복잡한 구조의 고차원적인 독해 문제에도 대응이 가능하도록 하는 모델 훈련 방법을 제안하고자 한다. 더불어 3가지의 데이터 증강 기법을 제안함으로써 고차원 독해 문제 데이터 셋의 부족 문제 또한 해소하고자 한다.

  • PDF