• 제목/요약/키워드: 데이터 정규화

검색결과 476건 처리시간 0.028초

MR 영상에서 정규화된 기울기 크기 영상을 이용한 자동 간 분할 기법 (Automatic Liver Segmentation Method on MR Images using Normalized Gradient Magnitude Image)

  • 이정진;김경원;이호
    • 한국멀티미디어학회논문지
    • /
    • 제13권11호
    • /
    • pp.1698-1705
    • /
    • 2010
  • 본 논문에서는 자기 공명 영상에서 고속의 간 분할 기법을 제안한다. 제안 기법은 MR 영상을 정규화된 기울기 크기 정보를 바탕으로 효율적으로 객체와 경계로 구분한다. 다음으로 간 영역에 해당하는 객체를 직전에 분할된 슬라이스의 간 영역에서 추출된 씨앗점들로 2차원 씨앗점 영역 성장법을 이용하여 검출한다. 마지막으로 롤링 볼 알고리즘과 연결 요소 분석 기법을 사용하여 간 경계 부근의 위양성 오차를 최소화한다. 20명의 환자 데이터에 대하여 제안 기법으로 분할한 결과와 수작업으로 분할한 결과를 비교하여 정확성을 검증하였다. 평균 볼륨 오버랩 오차 5.2%였고, 평균 절대값 볼륨 측정 오차는 1.9%였다. 제안 기법으로 한 환자 데이터를 분할하는 데 소요되는 평균 시간은 약 3초 정도였다. 제안 기법은 빠르고, 정확한 간 분할을 필요로 하는 컴퓨터 보조 간 진단 기법에 사용될 수 있다.

랜덤 심볼에 기반한 정보이론적 학습법의 스텝 사이즈 정규화 (Step-size Normalization of Information Theoretic Learning Methods based on Random Symbols)

  • 김남용
    • 인터넷정보학회논문지
    • /
    • 제21권2호
    • /
    • pp.49-55
    • /
    • 2020
  • 랜덤 심볼열을 기반으로 한 정보이론적 학습법 (ITL)은 특정 확률분포를 갖도록 랜덤하게 발생시킨 심볼열을 타겟 데이터로 활용하고, 입력 데이터 사이의 확률분포 거리 최소화를 비용함수로 하여 설계된다. 이 방식의 단점으로, 고정상수를 알고리듬 갱신의 스텝사이즈로 사용하므로 입력 전력의 통계적 추이를 활용할 수 없다. 정보포텐셜 출력(information potential output, IPO)와 연관된 기울기에서는 정보포텐셜 입력(information potential input, IPI)이, 정보포텐셜 오차(information potential error, IPE)와 관련된 기울기에서는 입력자체가 입력으로 작용함을 이 연구에서 밝혀내고, 입력의 전력 추이를 따로 계산하여 스텝사이즈 (step size)를 정규화하도록 제안하였다. 제안된 알고리듬은 충격성잡음과 다중경로 페이딩 환경의 통신시스템 실험에서 기존 방식보다 약 4dB 정도 더 낮은 정상상태 오차 전력, 약 2배 이상 빠른 수렴속도를 나타냈다.

성도 정규화를 이용한 감정 변화에 강인한 음성 인식 (Robust Speech Recognition using Vocal Tract Normalization for Emotional Variation)

  • 김원구;방현진
    • 한국지능시스템학회논문지
    • /
    • 제19권6호
    • /
    • pp.773-778
    • /
    • 2009
  • 본 논문에서는 인간의 감정 변화에 강인한 음성 인식 시스템을 구현하기 위하여 감정 변화의 영향을 최소화 하는 방법에 관한 연구를 수행하였다. 이를 위하여 우선 다양한 감정이 포함된 음성 데이터베이스를 사용하여 감정 변화에 따른 음성 신호의 변화를 관찰하였다. 감정이 포함되지 않은 평상의 음성으로 학습된 음성 인식 시스템에 감정이 포함된 인식 데이터가 입력되는 경우 감정에 따른 음성의 차이가 인식 시스템의 성능을 저하시킨다. 본 연구에서는 감정의 변화에 따라 화자의 성도 길이가 변화한다는 것과 이러한 변화는 음성 인식 시스템의 성능을 저하시키는 원인 중의 하나임을 관찰하였다. 본 연구에서는 이러한 음성의 변화를 감소시키는 방법으로 성도 길이 정규화 방법을 사용한 감정 변화에 강인한 음성 인식 시스템을 개발하였다. HMM을 사용한 단독음 인식 실험에서 제안된 학습 방법을 사용하면 감정 데이터의 오차가 기존방법보다 41.9% 감소되었다.

다중캐리어 해상 MANET에서 여러 캐리어 선택가능하고 정규화된 전송특성에 의한 경로배정방식 (A multi carrier selectable routing scheme by normalized transmission characteristics (MCS-NTC) at marine multi-carrier MANETs)

  • 손주영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제37권2호
    • /
    • pp.199-204
    • /
    • 2013
  • 해상데이터통신은 아직 전송률과 비용의 제약으로 새로운 체계가 요청된다. 육상의 광대역접속기술들을 해상에서 최대한 활용하기 위하여 제안되는 자율망 모델에서 개별 링크별로 최적의 캐리어를 선택하여 전송성능을 최적화하는 경로배정방식을 제안한다. 이 방식은 각 링크별로 응용과 캐리어의 전송특성을 정규화된 값으로 최적 노드와 캐리어를 찾아 최적경로를 선택하는(MCS-NTC) 방식이다. 전송특성의 구체적인 값을 서로 비교하는 최다승방식(OMH-MW)과 성능을 비교하였다. 이를 통해 이 논문에서 제안하는 MCS-NTC 방식이 여러 전송특성(대역폭, 비용, 지연시간, 홉수, 캐리어수)과 경로탐색시간 측면에서 기존 방식에 비해 더 효율적인 경로를 형성함을 확인할 수 있었다.

이형 데이터 기반의 예측 모델 생성을 위한 데이터 정제 방법론 (A Practical Methodology of Preparing Data for Generating Prediction Model using Heterogeneous Data Sources)

  • 이은경;유연택;이건수
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 추계학술발표대회
    • /
    • pp.674-677
    • /
    • 2019
  • 예측 모델은 어떤 상황이 주어졌을 때, 다음 상황에 대한 예측을 수행하는 시스템으로, 현재 상황을 올바르게 인지하고, 그 인지된 상황을 토대로 미래를 예측할 수 있는 지능을 갖고 있어야 한다. 이러한 예측 모델이 올바르게 동작하기 위해서는 상황을 올바르게 인지하는 기능이 우선되어야 하지만, 원시 데이터로부터 상황을 인지하기 위해서는 원시 데이터를 올바르게 해석하기 위한 데이터 정제 과정이 필요하다. 이에 본 연구에서는 다양한 형태의 원시 데이터를 예측 모델의 유효한 입력 값으로 변환시키기 위한 데이터 정제 방법을 제안한다. 본 방법은 윈시 데이터의 형태 정의, 데이터 정규화, 속성 관계 검증, 결측치 보정, 그리고 신뢰도 적용의 5단계로 구성되어 있다.

센서 데이터 합성을 통한 반려동물 행동 감지 (Pet Behavior Detection through Sensor Data Synthesis)

  • 김형주;박찬;문남미
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 추계학술발표대회
    • /
    • pp.606-608
    • /
    • 2022
  • 센서 데이터를 활용한 행동 감지 연구는 인간 행동 인식을 선행연구로 진행되었으며, 인식의 정확도를 높이기 위해 전처리, 보간, 증강 등을 통한 연구가 활발히 진행되고 있다. 이에 본 논문에서는 시계열 센서 데이터 증강을 통하여 반려동물의 행동 감지를 제안한다. ODROID 단일 보드 컴퓨터와 6축 센서(가속도, 자이로) 데이터를 탑재한 소형 디바이스를 사용하여 블루투스 통신을 통해 웹 서버 DB에 저장한다. 저장된 데이터는 이상치, 결측치 처리 후 정규화를 통해 시퀀스를 구성하는 전처리 과정을 거친다. 이후 GAN을 기반으로 한 시계열 데이터 증강을 진행한다. 이때, 데이터 증강은 입력된 텍스트에 따라 센서 데이터로 변환하여 데이터를 증강한다. 학습된 딥러닝 모델을 바탕으로 행동을 감지 후 평가 지표에 따라 모델 성능을 검증한다.

텍스트 기반 119 신고전화 상황 분류 (A text-based emergency situation classification method)

  • 곽세민;임윤섭;최종석
    • 한국재난정보학회:학술대회논문집
    • /
    • 한국재난정보학회 2016년 정기학술대회
    • /
    • pp.304-306
    • /
    • 2016
  • 본 논문에서는 기계학습 방법에 기반을 둔 119 긴급 신고 전화 전사 데이터에 대한 구급, 구조, 화재 상황 분류 알고리즘을 개발하였다. 신고전화에서 빈번하게 발생하는 비정형 발화 패턴을 효율적으로 정규화하고 자연어 문장 처리 기법에서 일반적으로 사용하는 방법을 적용하여 신고전화 텍스트 데이터를 기계학습에서 사용할 수 있는 특징 벡터로 재구성하였다. 2743개의 신고전화에 대해 선형 서포트 벡터 머신을 이용하여 상황 분류를 수행한 결과, 92% 의 정확도를 얻을 수 있었다.

  • PDF

연속음성인식의 음향모델 출력을 이용한 뉴스 데이터 분석 (News Data Analysis Using Acoustic Model Output of Continuous Speech Recognition)

  • 이경록
    • 한국콘텐츠학회논문지
    • /
    • 제6권10호
    • /
    • pp.9-16
    • /
    • 2006
  • 본 논문에서는 연속음성인식의 음향모델 출력을 이용하여 뉴스 데이터를 분석하였다. 실험에 사용된 뉴스 데이터베이스는 2,093개의 기사로 구성되어 있다. 기존의 한국어 연속음성인식은 열악한 언어모델 때문에 낮은 인식성능을 보여 뉴스 데이터 분석에 적합하지 않다. 본 논문에서는 이를 보완하기 위해서 상대적으로 견인한 음향모델의 인식결과를 후처리하여 핵심어 정보 파일을 만들었다. 음향모델의 출력레벨 문턱치가 100일 때 전체 인식대상 형태소의 86.9%가 인식되었다. 동일한 조건에 길이정보 기반 정규화를 적용하였더니 81.25%가 인식되었다. 정규화의 목적은 긴 길이의 형태소를 보상하는 것이다. 실험결과, 인식대상 형태소 인식률은 75.13%였다. 그리고 5,040MB의 뉴스 데이터에서 314MB의 핵심어 정보 파일이 만들어졌다. 이것은 절대적인 정보량이 93.8% 감소한 것이다.

  • PDF

LSTM 기반의 sequence-to-sequence 모델을 이용한 한글 자동 띄어쓰기 (LSTM based sequence-to-sequence Model for Korean Automatic Word-spacing)

  • 이태석;강승식
    • 스마트미디어저널
    • /
    • 제7권4호
    • /
    • pp.17-23
    • /
    • 2018
  • 자동 띄어쓰기 특성을 효과적으로 처리할 수 있는 LSTM(Long Short-Term Memory Neural Networks) 기반의 RNN 모델을 제시하고 적용한 결과를 분석하였다. 문장이 길거나 일부 노이즈가 포함된 경우에 신경망 학습이 쉽지 않은 문제를 해결하기 위하여 입력 데이터 형식과 디코딩 데이터 형식을 정의하고, 신경망 학습에서 드롭아웃, 양방향 다층 LSTM 셀, 계층 정규화 기법, 주목 기법(attention mechanism)을 적용하여 성능을 향상시키는 방법을 제안하였다. 학습 데이터로는 세종 말뭉치 자료를 사용하였으며, 학습 데이터가 부분적으로 불완전한 띄어쓰기가 포함되어 있었음에도 불구하고, 대량의 학습 데이터를 통해 한글 띄어쓰기에 대한 패턴이 의미 있게 학습되었다. 이것은 신경망에서 드롭아웃 기법을 통해 학습 모델의 오버피팅이 되지 않도록 함으로써 노이즈에 강한 모델을 만들었기 때문이다. 실험결과로 LSTM sequence-to-sequence 모델이 재현율과 정확도를 함께 고려한 평가 점수인 F1 값이 0.94로 규칙 기반 방식과 딥러닝 GRU-CRF보다 더 높은 성능을 보였다.

초고속 초음파 영상의 효과적인 데이터율 저감을 위한 적응 양자화 (Adaptive quantization for effective data-rate reduction in ultrafast ultrasound imaging)

  • 장도영;윤희철
    • 한국음향학회지
    • /
    • 제42권5호
    • /
    • pp.422-428
    • /
    • 2023
  • 초고속 초음파 영상은 탄성 영상, 초고속 도플러, 초해상도 영상과 같은 다양한 초음파 기반의 기능성 영상기술에 폭넓게 적용되고 있다. 하지만, 획득하는 데이터의 양이 많아 실시간 영상 재구성이나 3차원 또는 모바일 초음파 영상 응용으로의 확장이 제한된다. 본 논문은 적응 양자화 기법을 통해 초고속 초음파 영상으로 획득되는 대용량 Radio frequency(RF) 데이터의 전송 효율을 높이는 방법을 제안한다. 인체에서 반사된 초음파 신호는 높은 동적 범위를 가져 대부분의 현재 시스템에서 사용되는 고정 양자화 기법은 10 bits ~ 14 bits 이상의 높은 양자화 단계를 가진다. 양자화 단계 저감에 대한 화질 저하의 한계를 극복하기 위해, 본 연구는 영상 깊이에 따라 구간을 설정하고, 각 영역별 RF 데이터를 정규화하고 양자화하는 방안을 제안한다. 정량적인 검증을 위해, Field II 컴퓨터 모사 실험을 활용하여, 고정 양자화 방법과 제안하는 방법의 대조도 대 잡음 비, 공간 해상도 및 원본 대비 유사도를 비교하였다. 또한, 연구용 초음파 장비를 활용한 인체 모사 실험 및 인체 실험을 통해 최종 3-bit로 재구성한 영상에서도 제안하는 방법이 효과적으로 적용되는 것을 입증하였다.