본 논문에서는 자기 공명 영상에서 고속의 간 분할 기법을 제안한다. 제안 기법은 MR 영상을 정규화된 기울기 크기 정보를 바탕으로 효율적으로 객체와 경계로 구분한다. 다음으로 간 영역에 해당하는 객체를 직전에 분할된 슬라이스의 간 영역에서 추출된 씨앗점들로 2차원 씨앗점 영역 성장법을 이용하여 검출한다. 마지막으로 롤링 볼 알고리즘과 연결 요소 분석 기법을 사용하여 간 경계 부근의 위양성 오차를 최소화한다. 20명의 환자 데이터에 대하여 제안 기법으로 분할한 결과와 수작업으로 분할한 결과를 비교하여 정확성을 검증하였다. 평균 볼륨 오버랩 오차 5.2%였고, 평균 절대값 볼륨 측정 오차는 1.9%였다. 제안 기법으로 한 환자 데이터를 분할하는 데 소요되는 평균 시간은 약 3초 정도였다. 제안 기법은 빠르고, 정확한 간 분할을 필요로 하는 컴퓨터 보조 간 진단 기법에 사용될 수 있다.
랜덤 심볼열을 기반으로 한 정보이론적 학습법 (ITL)은 특정 확률분포를 갖도록 랜덤하게 발생시킨 심볼열을 타겟 데이터로 활용하고, 입력 데이터 사이의 확률분포 거리 최소화를 비용함수로 하여 설계된다. 이 방식의 단점으로, 고정상수를 알고리듬 갱신의 스텝사이즈로 사용하므로 입력 전력의 통계적 추이를 활용할 수 없다. 정보포텐셜 출력(information potential output, IPO)와 연관된 기울기에서는 정보포텐셜 입력(information potential input, IPI)이, 정보포텐셜 오차(information potential error, IPE)와 관련된 기울기에서는 입력자체가 입력으로 작용함을 이 연구에서 밝혀내고, 입력의 전력 추이를 따로 계산하여 스텝사이즈 (step size)를 정규화하도록 제안하였다. 제안된 알고리듬은 충격성잡음과 다중경로 페이딩 환경의 통신시스템 실험에서 기존 방식보다 약 4dB 정도 더 낮은 정상상태 오차 전력, 약 2배 이상 빠른 수렴속도를 나타냈다.
본 논문에서는 인간의 감정 변화에 강인한 음성 인식 시스템을 구현하기 위하여 감정 변화의 영향을 최소화 하는 방법에 관한 연구를 수행하였다. 이를 위하여 우선 다양한 감정이 포함된 음성 데이터베이스를 사용하여 감정 변화에 따른 음성 신호의 변화를 관찰하였다. 감정이 포함되지 않은 평상의 음성으로 학습된 음성 인식 시스템에 감정이 포함된 인식 데이터가 입력되는 경우 감정에 따른 음성의 차이가 인식 시스템의 성능을 저하시킨다. 본 연구에서는 감정의 변화에 따라 화자의 성도 길이가 변화한다는 것과 이러한 변화는 음성 인식 시스템의 성능을 저하시키는 원인 중의 하나임을 관찰하였다. 본 연구에서는 이러한 음성의 변화를 감소시키는 방법으로 성도 길이 정규화 방법을 사용한 감정 변화에 강인한 음성 인식 시스템을 개발하였다. HMM을 사용한 단독음 인식 실험에서 제안된 학습 방법을 사용하면 감정 데이터의 오차가 기존방법보다 41.9% 감소되었다.
Journal of Advanced Marine Engineering and Technology
/
제37권2호
/
pp.199-204
/
2013
해상데이터통신은 아직 전송률과 비용의 제약으로 새로운 체계가 요청된다. 육상의 광대역접속기술들을 해상에서 최대한 활용하기 위하여 제안되는 자율망 모델에서 개별 링크별로 최적의 캐리어를 선택하여 전송성능을 최적화하는 경로배정방식을 제안한다. 이 방식은 각 링크별로 응용과 캐리어의 전송특성을 정규화된 값으로 최적 노드와 캐리어를 찾아 최적경로를 선택하는(MCS-NTC) 방식이다. 전송특성의 구체적인 값을 서로 비교하는 최다승방식(OMH-MW)과 성능을 비교하였다. 이를 통해 이 논문에서 제안하는 MCS-NTC 방식이 여러 전송특성(대역폭, 비용, 지연시간, 홉수, 캐리어수)과 경로탐색시간 측면에서 기존 방식에 비해 더 효율적인 경로를 형성함을 확인할 수 있었다.
예측 모델은 어떤 상황이 주어졌을 때, 다음 상황에 대한 예측을 수행하는 시스템으로, 현재 상황을 올바르게 인지하고, 그 인지된 상황을 토대로 미래를 예측할 수 있는 지능을 갖고 있어야 한다. 이러한 예측 모델이 올바르게 동작하기 위해서는 상황을 올바르게 인지하는 기능이 우선되어야 하지만, 원시 데이터로부터 상황을 인지하기 위해서는 원시 데이터를 올바르게 해석하기 위한 데이터 정제 과정이 필요하다. 이에 본 연구에서는 다양한 형태의 원시 데이터를 예측 모델의 유효한 입력 값으로 변환시키기 위한 데이터 정제 방법을 제안한다. 본 방법은 윈시 데이터의 형태 정의, 데이터 정규화, 속성 관계 검증, 결측치 보정, 그리고 신뢰도 적용의 5단계로 구성되어 있다.
센서 데이터를 활용한 행동 감지 연구는 인간 행동 인식을 선행연구로 진행되었으며, 인식의 정확도를 높이기 위해 전처리, 보간, 증강 등을 통한 연구가 활발히 진행되고 있다. 이에 본 논문에서는 시계열 센서 데이터 증강을 통하여 반려동물의 행동 감지를 제안한다. ODROID 단일 보드 컴퓨터와 6축 센서(가속도, 자이로) 데이터를 탑재한 소형 디바이스를 사용하여 블루투스 통신을 통해 웹 서버 DB에 저장한다. 저장된 데이터는 이상치, 결측치 처리 후 정규화를 통해 시퀀스를 구성하는 전처리 과정을 거친다. 이후 GAN을 기반으로 한 시계열 데이터 증강을 진행한다. 이때, 데이터 증강은 입력된 텍스트에 따라 센서 데이터로 변환하여 데이터를 증강한다. 학습된 딥러닝 모델을 바탕으로 행동을 감지 후 평가 지표에 따라 모델 성능을 검증한다.
본 논문에서는 기계학습 방법에 기반을 둔 119 긴급 신고 전화 전사 데이터에 대한 구급, 구조, 화재 상황 분류 알고리즘을 개발하였다. 신고전화에서 빈번하게 발생하는 비정형 발화 패턴을 효율적으로 정규화하고 자연어 문장 처리 기법에서 일반적으로 사용하는 방법을 적용하여 신고전화 텍스트 데이터를 기계학습에서 사용할 수 있는 특징 벡터로 재구성하였다. 2743개의 신고전화에 대해 선형 서포트 벡터 머신을 이용하여 상황 분류를 수행한 결과, 92% 의 정확도를 얻을 수 있었다.
본 논문에서는 연속음성인식의 음향모델 출력을 이용하여 뉴스 데이터를 분석하였다. 실험에 사용된 뉴스 데이터베이스는 2,093개의 기사로 구성되어 있다. 기존의 한국어 연속음성인식은 열악한 언어모델 때문에 낮은 인식성능을 보여 뉴스 데이터 분석에 적합하지 않다. 본 논문에서는 이를 보완하기 위해서 상대적으로 견인한 음향모델의 인식결과를 후처리하여 핵심어 정보 파일을 만들었다. 음향모델의 출력레벨 문턱치가 100일 때 전체 인식대상 형태소의 86.9%가 인식되었다. 동일한 조건에 길이정보 기반 정규화를 적용하였더니 81.25%가 인식되었다. 정규화의 목적은 긴 길이의 형태소를 보상하는 것이다. 실험결과, 인식대상 형태소 인식률은 75.13%였다. 그리고 5,040MB의 뉴스 데이터에서 314MB의 핵심어 정보 파일이 만들어졌다. 이것은 절대적인 정보량이 93.8% 감소한 것이다.
자동 띄어쓰기 특성을 효과적으로 처리할 수 있는 LSTM(Long Short-Term Memory Neural Networks) 기반의 RNN 모델을 제시하고 적용한 결과를 분석하였다. 문장이 길거나 일부 노이즈가 포함된 경우에 신경망 학습이 쉽지 않은 문제를 해결하기 위하여 입력 데이터 형식과 디코딩 데이터 형식을 정의하고, 신경망 학습에서 드롭아웃, 양방향 다층 LSTM 셀, 계층 정규화 기법, 주목 기법(attention mechanism)을 적용하여 성능을 향상시키는 방법을 제안하였다. 학습 데이터로는 세종 말뭉치 자료를 사용하였으며, 학습 데이터가 부분적으로 불완전한 띄어쓰기가 포함되어 있었음에도 불구하고, 대량의 학습 데이터를 통해 한글 띄어쓰기에 대한 패턴이 의미 있게 학습되었다. 이것은 신경망에서 드롭아웃 기법을 통해 학습 모델의 오버피팅이 되지 않도록 함으로써 노이즈에 강한 모델을 만들었기 때문이다. 실험결과로 LSTM sequence-to-sequence 모델이 재현율과 정확도를 함께 고려한 평가 점수인 F1 값이 0.94로 규칙 기반 방식과 딥러닝 GRU-CRF보다 더 높은 성능을 보였다.
초고속 초음파 영상은 탄성 영상, 초고속 도플러, 초해상도 영상과 같은 다양한 초음파 기반의 기능성 영상기술에 폭넓게 적용되고 있다. 하지만, 획득하는 데이터의 양이 많아 실시간 영상 재구성이나 3차원 또는 모바일 초음파 영상 응용으로의 확장이 제한된다. 본 논문은 적응 양자화 기법을 통해 초고속 초음파 영상으로 획득되는 대용량 Radio frequency(RF) 데이터의 전송 효율을 높이는 방법을 제안한다. 인체에서 반사된 초음파 신호는 높은 동적 범위를 가져 대부분의 현재 시스템에서 사용되는 고정 양자화 기법은 10 bits ~ 14 bits 이상의 높은 양자화 단계를 가진다. 양자화 단계 저감에 대한 화질 저하의 한계를 극복하기 위해, 본 연구는 영상 깊이에 따라 구간을 설정하고, 각 영역별 RF 데이터를 정규화하고 양자화하는 방안을 제안한다. 정량적인 검증을 위해, Field II 컴퓨터 모사 실험을 활용하여, 고정 양자화 방법과 제안하는 방법의 대조도 대 잡음 비, 공간 해상도 및 원본 대비 유사도를 비교하였다. 또한, 연구용 초음파 장비를 활용한 인체 모사 실험 및 인체 실험을 통해 최종 3-bit로 재구성한 영상에서도 제안하는 방법이 효과적으로 적용되는 것을 입증하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.