Annual Conference on Human and Language Technology
/
1997.10a
/
pp.219-226
/
1997
에이전트는 분산 환경에서 작업을 수행하는 지적인 특성을 갖는 응용 프로그램으로 정의되며, 연구 분야에 따라 다양한 의미로 해석이 가능하다. 그중에서 로봇 에이전트는 전세계에 산재된 방대한 양의 정보를 스스로 추적하며 새로운 정보를 찾는다. 로봇 에이전트에 대한 기존의 연구는 대부분 통계적인 목적이나 검색엔진을 위한 데이터의 수집을 목적으로 사용되었다. 많은 정보를 수집하기 위해 더 높은 성능의 로봇 에이전트들이 제작되었고, 이러한 프로그램들이 팽창하면서 네트워크를 과부하시키는 현상을 초래하게 되었다. 재귀적인 방법으로 수행되는 로봇 에이전트의 사용을 억제하기 위한 연구들이 많이 발표되었으나, 수동적인 방법에 의존하는 연구가 대부분이며 대표적인 것이 로봇 배제를 위한 표준안 정도이다. 본 연구에서는 이러한 로봇 에이전트의 문제점을 개선하여, 서버와 클라이언트간에 대화형으로 수행되는 인덱스 로봇 에이전트를 제안하며, 사용자의 요구에 따라 수행되는 로봇 에이전트에 의한 정보 획득의 방법을 시도하여 네트워크의 과부하를 억제하면서도 정보의 신뢰성과 정확성을 보장한다.
Most relational database systems provide $B^+$-trees as their main index structures, and use bulk-loading techniques for creating new $B^+$-trees on existing data from scratch. Although bulk loadings are more effective than inserting keys one by one, they are still time-consuming because they have to sort all the keys from large data. To improve the performance of bulk loadings, this paper proposes an efficient parallel bulk loading method for $B^+$-trees based on CUDA, which is a parallel computing architecture developed by NVIDIA to utilize computing powers of graphic processor units for general purpose computing. Experimental results show that the proposed method enhance the performance more than 70 percents compared to existing bulk loading methods.
You Kang-Soo;Lee Bong-Ju;Jang Euee S.;Kwak Hoon-Sung
The Journal of Korean Institute of Communications and Information Sciences
/
v.30
no.7C
/
pp.658-665
/
2005
Re-assignment scheme of index in index image is called reindexing. It has been well known that index image can be reindexed without losslessness. In this paper, we introduces an adaptive rank based reindexing scheme using co-occurrence frequency between neighboring pixels. Original index image can be converted into rank image by the proposed scheme. Using the proposed scheme, a better compression efficiency can be expected because most of the reindexed values(rank) get distributed with a smaller variance than the original index image. Experinental results show that the proposed scheme achieves a much better compression performance over GIF, arithmetic coding, Zeng's algorithm and RIAC scheme.
While many users searched for insurance information online, there were not many cases of contents recommendation researches on insurance companies' websites. Therefore, this study proposed a page recommendation system with high possibility of preference to users by utilizing page visit history of insurance companies' websites. Data was collected by using client-side storage that occurs when using a web browser. Collaborative filtering was applied to research as a recommendation technique. As a result of experiment, we showed good performance in item-based collaborative (IBCF) based on Jaccard index using binary data which means visit or not. In the future, it will be possible to implement a content recommendation system that matches the marketing strategy when used in a company by studying recommendation technology that weights items.
During recent years, a new framework, which aims to bring a unified and global approach in indexing, browsing and querying various digital multimedia data such as audio, video and image has been developed. This new system partitions each media stream into smaller units based on actual physical events. These physical events within oath media stream can then be effectively indexed for retrieval. In this paper, we present a new approach that exploits audio, image and video features to segment and analyze the audio-visual data. Integration of audio and visual analysis can overcome the weakness of previous approach that was based on the image or video analysis only. We Implement a web-based multi media data retrieval system called XCRAB and report on its experiment result.
Journal of the Korea Academia-Industrial cooperation Society
/
v.19
no.11
/
pp.758-764
/
2018
Digital documents such as patents, scholarly papers and research reports have author keywords which summarize the topics of documents. Different documents are likely to describe the same topic if they share the same keywords. Document clustering aims at clustering documents to similar topics with an unsupervised learning method. However, it is difficult to apply to a large amount of documents event though the document clustering is utilized to in various data analysis due to computational complexity. In this case, we can cluster and connect massive documents using keywords efficiently. Existing bottom-up hierarchical clustering requires huge computation and time complexity for clustering a large number of keywords. This paper proposes an inverted index based bottom-up clustering for keywords and analyzes the results of clustering with massive keywords extracted from scholarly papers and research reports.
Recently, IoT-linked services have been used in various environments, and IoT and artificial intelligence technologies are being fused. However, since technologies that process IoT data stably are not fully supported, research is needed for this. In this paper, we propose a processing technique that can optimize IoT data after generating embedded vectors based on machine learning for IoT data. In the proposed technique, for processing efficiency, embedded vectorization is performed based on QR such as index of IoT data, collection location (binary values of X and Y axis coordinates), group index, type, and type. In addition, data generated by various IoT devices are integrated and managed so that load balancing can be performed in the IoT data collection process to asymmetrically link IoT data. The proposed technique processes IoT data to be orthogonalized based on hash so that IoT data can be asymmetrically grouped. In addition, interference between IoT data may be minimized because it is periodically generated and grouped according to IoT data types and characteristics. Future research plans to compare and evaluate proposed techniques in various environments that provide IoT services.
Proceedings of the Korean Information Science Society Conference
/
2006.10c
/
pp.45-50
/
2006
정보의 단순한 연결뿐만 아니라 의미적인 연결 관계를 표현하는 시맨틱 웹에서 RDF와 RDFS만으로는 정보간의 다양한 의미적 관계를 나타내기가 힘들다. 따라서 정보간의 의미적 관계를 보다 명확하게 필요로 하는 분산 환경에서는 시맨틱 웹 언어의 표준으로 인식되고 있는 OWL로 표현된 시맨틱 웹 데이터를 위한 저장 구조가 필요하다. 따라서 본 논문에서는 분산 환경을 고려하여 OWL이 표현하는 다양한 의미적 관계를 이용한 질의 처리를 지원하는 저장 구조를 제안한다. 그리고 OWL에 정의된 클래스 간의 계층 관계를 이용한 질의의 효율적인 처리를 위한 인덱스 구조와 처리 전략을 제안한다.
에이전트는 분산 환경에서 작업을 수행하는 지적인 특성을 갖는 응용 프로그램으로 정의되며, 연구 분야에 따라 다양한 의미로 해석이 가능하다. 그 중에서 로봇 에이전트는 전세계에 산재된 방대한 양의 정보를 스스로 추적하며 새로운 정보를 찾는다. 로봇 에이전트에 대한 기존의 연구는 대부분 통계적인 목적이나 검색엔진을 위한 데이터의 수집을 목적으로 사용되었다. 많은 정보를 수집하기 위해 더 높은 성능의 로봇 에이전트들이 제작되었고, 이러한 프로그램들이 팽창하면서 네트워크를 과부하시키는 현상을 초래하게 되었다. 재귀적인 방법으로 수행되는 로봇 에이전트의 사용을 억제하기 위한 연구들이 많이 발표되었으나, 수동적인 방법에 의존하는 연구가 대부분이며 대표적인 것이 로봇 배제를 위한 표준안 정도이다. 본 연구에서는 이러한 로봇 에이전트의 문제점을 개선하여, 서버와 클라이언트간에 대화형으로 수행되는 인덱스 로봇 에이전트를 제안하며, 사용자의 요구에 따라 수행되는 로봇 에이전트에 의한 정보획득의 방법을 시도하여 네트워크의 과부하를 억제하면서도 정보의 신뢰성과 정확성을 보장한다. 아울러, 차세대 지능형 검색 기술인 TEMA 시스템에 대해 소개한다.
Proceedings of the Korean Information Science Society Conference
/
2004.10b
/
pp.106-108
/
2004
이미지의 유사도나 의미분석을 위해 주요 특징벡터인 색상, 경계선, 질감 등의 연구와 이들을 이미지 전역구간 및 관심영역에 적용하기 위해 데이터베이스에 저장하기 위한 연구가 활발히 진행되고 있다. 특히, 특징벡터의 분할 방법을 유동적, 또는 크게 할 경우 알고리즘 복잡화로 인해 추출 및 검색시간과 오버헤드가 증가하게 되고, 적게할 경우 정확도가 감소한다. 따라서 본 논문은 색상 및 경계선 벡터를 사분트리 분할 인덱스 구조로 데이터 베이스에 저장하고, 두 가지 문제를 동시에 해결하기 위한 방법을 제안한다. 이미지 전역구간을 사분노드로 분할하고, 관심영역의 색상정보를 비교하고, 추출된 전역적 경계분포 순위계수와 비교 알고리즘을 이용하여 이미지에 분포된 객체의 위치정보를 검색함으로써, 검색속도 및 정확성을 개선하였다
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.