데이터 마이닝에서 클러스터링은 서로 유사한 특징을 갖는 데이터들을 동일한 클래스로 분류하는 방법이다. 클러스터링에는 다양한 방법이 존재하지만 대표적으로 집합으로 표현된 데이터들의 유사도를 측정하기 위해서는 자카드 유사도(Jaccard Similarity)를 이용한다. 자카드 유사도는 서로 다른 집합 간의 공통된 부분을 상대적으로 평가하여 유사도를 측정하는 방법이다. 그러나 최근에는 데이터를 저장할 수 있는 기술과 매체의 발전으로 표현할 수 있는 데이터의 영역과 범위는 발전되고 있기 때문에 많은 연산과 시간의 비용이 발생하게 된다. 이를 해결하기 위해서 두 데이터의 표본의 유사도를 통해 실제 데이터들의 유사도를 추정할 수 있는 Min-Hash 가 제안되었다. 본 논문에서는 이를 활용하여 집합의 영역을 다중 집합(Multiset)으로 확장하여 중복되는 값을 가질 수 있는 두 데이터 간의 유사도를 효율적으로 추정할 수 있는 Min-Max Hash 를 제안한다.
최근 빠르게 변화하는 산업 환경에서 뉴스 기사와 같은 비정형 데이터를 기반으로 산업 트랜드를 분석하기 위한 연구가 진행되고 있다. 뉴스와 같은 비정형 데이터를 기반으로 산업별 트랜드를 분석하기 위해서는 분석 대상 산업에 대한 많은 양의 시계열 데이터가 요구된다. 하지만, 수집된 비정형 데이터를 분류하면 산업별/기간별 일정하지 않은 데이터 분포를 보이거나, 특정 산업에 대해서는 특정 기간에 데이터가 존재하지 않은 경우가 발생하여 산업별 시계열 분석이 어려운 경우가 발생할 수 있다. 이에, 본 논문에서는 산업별/기간별 균일하지 못한 비정형 데이터의 분포를 보정하기 위한 방법으로 비정형 데이터 기반 산업간 유사도를 분석 기법을 제안한다. 산업별 유사도 분석을 위해 각 산업별 주요 키워드를 도출하고 토픽 모델링 기법을 이용하여 산업간 유사도 분석을 통해 산업별/기간별 비정형 데이터 부족현상을 보완하는 방법을 제시한다.
시퀀스 데이터(sequence data)에서는 각 데이터 값보다는 전후 그들 사이의 변화추세 등이 더 큰 정보로 작용하는 것이 일반적이다. 본문에서는 시퀀스 데이터베이스를 대상으로 하여 주어진 시퀀스 패턴과 모양이 유사한 모든 부분시퀀스를 검색해 내는 새로운 방식을 제안한다. 본 방식에서는 시퀀스 데이터의 모양 추출을 위한 데이터 변환, 유사 모양 패턴 클러스터링, 새로운 유사도 계산 방식 등을 도입함으로써, 기존의 방식이 매우 제한적인 패턴만을 유사패턴으로 간주하던 것에 비하여, 패턴이 데이터축 혹은 타임축으로 각각 확대, 축소, 이동된 경우에도 유사패턴으로 검색이 가능하다.
본 논문은 구매이력 데이터에서 상품간의 분류 체계를 고려하여 시퀀스 간의 유사도를 계산하는 새로운 방법을 제안한다. 시퀀스란 두 항목간의 순서가 존재하는 데이터를 의미한다. 항목 간의 선후관계가 중요한 시퀀스 데이터에서는 두 시퀀스 간의 유사도를 정확히 정의하는 것이 중요하다. 본 논문에서는 대표적인 시퀀스 유사도 측정 알고리즘인 편집 거리 알고리즘을 활용하여 구매이력 데이터에서 시퀀스 간의 유사도를 정의한다. 상품은 상품의 특성에 따라 항목 분류 체계에서 여러 범주로 분류된다. 이 경우 기존의 편집 거리 알고리즘에서 문자의 일치유무에 따라 단순히 0 또는 1을 부여하는 것은 부정확하다. 따라서 본 논문은 편집 거리 알고리즘의 수정 연산 중 대체 연산 비용 계산 시 항목 분류 트리를 사용하여 연산 비용이 0 에서 1 사이의 값을 가지도록 세분화하였다. 실험 결과 제안 방법은 대체 연산 비용 계산 시 두 문자가 다르면 단순히 1 을 부여하는 기존의 편집 거리 알고리즘에 비해 시퀀스 간의 유사도를 더 정확하게 계산함을 확인하였다.
협력 필터링 시스템에서 데이터 희소성 문제의 해결을 위해 공통평가항목수를 반영하는 방법이 연구되었다. 이러한 방법으로 널리 알려진 자카드 지수는 기존의 유사도 척도와 결합되어 성능을 개선할 수 있었다. 그러나, 다양한 데이터 환경에서 여러 유사도 척도들과 각각 결합했을 때의 성능 개선 효과에 대한 분석 연구는 미미하므로, 본 연구는 이에 대한 분석을 목적으로 한다. 우선 자카드 지수 자체를 유사도 척도로 사용했을때 희소한 데이터셋 상에서 전통적인 척도들보다 월등한 예측 성능을 보였고 추천 성능도 매우 우수하였다. 자카드 지수를 결합함으로써 기존 유사도 척도는 데이터 특성에 상관없이 성능이 대개 향상되었고, 특히 코사인 유사도는 희소한 데이터셋에서 가장 큰 향상을 이루었으나, 평균차이 제곱(Mean Squared Difference)의 유사도는 밀집된 데이터셋에서 오히려 저하된 예측 성능을 보였다. 따라서, 자카드 지수를 결합하여 사용하기 위해 데이터 환경 특성과 유사도 척도를 고려할 필요가 있다.
최근 영상 데이터의 효율적인 표현 및 처리를 위해 텐서를 사용하는 연구가 관심을 모으고 있다. 본 연구에서는 2차 텐서로 표현된 데이터를 효과적으로 분류하기 위한 시스템을 개발하는 것을 목적으로 한다. 이를 위해 먼저 일반적인 벡터 데이터에 대해 개발되어진 클래스 요인과 환경 요인으로 이루어진 데이터 생성 모델을 확장하여 2차 텐서로 표현된 영상에 적합한 데이터 생성 모델을 정의하고, 이에 적합한 유사도 함수를 제안하였다. 제안하는 유사도 함수는 행렬정규분포를 이용하여 환경 요인의 확률분포를 추정함으로써 얻을 수 있다. 여러 벤치마크 데이터들을 이용하여 실험한 결과 2차 텐서를 사용함으로써 벡터 형태의 표현방식을 사용하는 것에 비해 분류율이 향상되었음을 확인하였다. 또한 제안하는 유사도 함수가 다른 기존의 유사도 함수에 비해 영상 데이터에 적합함을 확인할 수 있었다.
협력적 필터링은 추천시스템을 구축하는 알고리즘으로 고객별 선호도를 예측하는데 사용되고 있다. 이에 본 연구는 행복감에 영향을 주는 요인인 자존감과 생활여건을 사용하여, 협력적 필터링을 기반으로 한 예측정확도가 높은 모형을 연구하고자 한다. 이를 위해, 자존감과 생활여건에 대한 응답자 간의 유사도 가중치를 각각 계산한 후, 자존감 유사도 가중치를 적용한 모형으로 행복감을 예측하고, 자존감 유사도 가중치에 생활여건 유사도 가중치를 부여한 유사도 가중치를 적용한 모형으로 행복감을 예측하였다. 그 결과 전자의 모형이 후자의 모형보다 예측정확도가 높게 나타났다.
사용자 행위 기반 인증 기술은 다른 인증 기술들에 비해서 인증의 인식률을 높이는데 많은 데이터의 장기간 추출이 필요하다. 본 논문은 터치 센서와 자이로스코프를 이용하여 그동안의 행위 기반 인증 연구에서 사용 되었던 행위 특정 데이터들 중에서 핵심적인 최소한의 데이터들만을 사용하였다. 측정한 데이터들의 검증에는 그간 사용자 행위 기반 인증 연구에서 이용되지 않고 문서 검색의 유사도 측정에 사용되었던 코사인 유사도를 사용하였다. 이를 통해 최소한의 특정 데이터와 기준이 되는 데이터의 코사인 유사도 비교 검증만을 통해서도 인증 범위에 적용되는 임계값을 조절하는 방식을 동해서 최초 EER 37.637%에서 최종 EER 1.897%의 높은 검증 성능을 증명하는데 성공하였다.
음성 대화 시스템에서는 사용자가 잘못된 슬롯명을 말하거나 음성인식 오류가 발생해 사용자의 의도에 맞지 않는 응답을 하는 경우가 있다. 이러한 문제를 해결하고자 말뭉치나 사전 데이터를 활용한 질의 교정 방법들이 제안되지만, 이는 지속적으로 사람이 개입하여 데이터를 주입해야하는 한계가 있다. 본 논문에서는 축적된 로그 데이터를 활용하여 사람의 개입 없이 음악 재생에 필요한 슬롯을 교정하는 자기 학습(Self-learning) 기반의 모델을 제안한다. 이 모델은 사용자가 특정 음악을 재생하고자 유사한 질의를 반복하는 상황을 이용하여 비지도 학습 기반으로 학습하고 음악 재생에 실패한 슬롯을 교정한다. 그리고, 학습한 모델 결과의 정확도에 대한 불확실성을 해소하기 위해 질의 슬롯 관계 유사도 모델을 이용하여 교정 결과에 대한 검증을 하고 슬롯 교정 결과에 대한 안정성을 보장한다. 모델 학습을 위한 데이터셋은 사용자가 연속으로 질의한 세션 데이터로부터 추출하며, 음악 재생 슬롯 세션 데이터와 질의 슬롯 관계 유사도 데이터를 각각 구축하여 슬롯 교정 모델과 질의 슬롯 관계 유사도 모델을 학습한다. 교정된 슬롯을 분석한 결과 발음 정보가 유사한 슬롯 뿐만 아니라 의미적인 관계가 있는 슬롯으로도 교정하여 사전 기반 방식보다 다양한 유형의 교정이 가능한 것을 보였다. 3 개월 간 수집된 로그 데이터로 학습한 음악 재생 슬롯 교정 모델은 일주일 동안 반복한 고유 질의 기준, 음악 재생 실패의 12%를 개선하는 성능을 보였다.
최근 시간적으로 변화된 데이터에서 유사한 값의 움직임 즉 유사 패턴을 검색하는 연구가 활발히 진행되고 있다. 시간적으로 변화된 데이터는 시계열 데이터 (time series data) 또는 시퀀스 데이터(sequence data)로 분류되며 기존의 스칼라 값을 가지는 데이터와는 매우 다른 의미를 가진다. 본 논문에서 유사 시퀀스 검색은 시퀀스 데이터웨어하우스에서 값의 변화가 유사한 형태를 가지는 시퀀스들을 검색한다. 유사 시퀀스를 검색하기 위하여 본 논문에서는 먼저 시퀀스 원시 데이터에 이 산 푸리에 변환(DFT, Discrete Fourier Transform)을 적용하여 데이터를 변환한다. 변환된 데이터는 그 특성으로 인하여 유사 패턴의 검색에 적합하며 또 유사도를 비교할 때 일부분만 사용되므로 색인에 사용되는 속성의 개수를 줄이는 장점이 있다. 또 데이터웨어하우스 환경이므로 더 좋은 성능을 보일 수 있는 비트맵 색인 기법을 적용하였다. 시퀀스 데이터의 효율적인 검색을 위하여 영역 지정 검색 방법을 제안하고 효율적인 실행을 위한 비트맵을 활용한 다양한 조합의 색인을 생성하고, 질의 최적화기의 연산 비용을 비교하면서 효율적인 검색 연산을 위한 최저 비용의 색인을 선택하는 기법을 연구하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.