상호 연관되는 복잡한 데이터 조건이 존재하는 환경에서 스카이라인 질의는 의사결정 시스템 등 폭넓은 애플리케이션 활용 가능성으로 다양한 분야에서 연구되어 왔다. 중앙집중식 환경에서 스카이라인 질의처리 기법이 초기에 제안되었으며 최근 대량의 다차원 데이터에 대해 데이터 공간을 분할하여 맵/리듀스 플랫폼 상에서 병렬적으로 처리하는 기법이 제안되었다. 그러나 현재까지의 기법이 비균등적 실행과 높은 중복 작업으로 효율성이 저하된다는 문제점을 배경으로 본 논문에서는 랜덤 샘플링을 통해 데이터 분포를 추정하여 비균등 분할 문제를 해결하고 각 기반의 데이터 공간을 분할하여 스카이라인 처리 과정에서 중복 작업을 최소화한 새로운 기법 MR-DEAP를 제안한다. 마지막으로 다양한 환경에서의 실험결과 제안된 기법이 다른 각 기반 분할과 그리드 분할 기법보다 우수한 것을 입증하였다.
디지털 측정장치의 발달에 따라 센서에서 출력되는 아날로그 신호를 디지털 신호로 변환하고, 이를 바탕으로 측정결과를 제시하는 경우가 많다. 그러나 아날로그 신호의 디지털화 과정에서는 정보의 유실이 생길 수밖에 없고, 또한 측정 헤드의 dimension 과 sampling interval 등과 같은 측정조건은 측정결과의 신뢰성에 많은 문제를 야기 시킨다. 본 연구에서는 새로운 측정방법을 바탕으로 시장-분산곡선과 Correlogram 법을 이용하여 그 특성을 해석하고, 데이터 샘플링 시 측정조건과 시료내의 변동성이 측정결과인 평균 굵기 및 굵기의 총분산에 미치는 영향을 찾아 보았다.(중략)
선박에 장착된 장비들을 통하여 수집된 다양한 데이터는 선박의 안전한 운항을 위하여 사용된다. 하지만 이러한 다양성으로 인해 데이터를 각각 관리하기에는 어려움이 있으므로 이를 통합 관리하기 위하여 데이터베이스를 구축하는 것이 효율적이다. 그러나 선박에서의 데이터베이스는 통상의 데이터베이스에 비해 급격한 저장 빈도 때문에 용량 초과 문제가 자주 발생한다. 본 논문에서는 이를 해결하고자 데이터의 샘플링과 삭제를 통하여 데이터베이스의 용량을 확보하면서 통합 관리가 가능한 다단 데이터베이스를 설계하고 구현한 후, 그 효율성을 시험한다.
하천에서의 분변성대장균은 분변성 오염 정도를 나타내는 지표로서, 이 농도가 높을수록 오염된 하천수와의 접촉을 통한 호흡기, 소화기 및 피부 관련 질병의 발발 확률이 높다고 알려져 있다. 따라서 하천에서의 수영, 수상스키 등과 같은 입수형 친수활동을 할 때, 분변성대장균 농도가 농도 기준 이하인지를 확인하고 이러한 정보를 친수활동에 이용할 필요가 있다. 그러나 분변성대장균의 경우, 현재 자동수질측정망에서 측정되고 있는 다른 수질인자들과는 달리 실시간 측정이 불가능하다고 알려져 있다. 분변성대장균을 측정하는데 있어 최소 18시간 이상이 필요하며, 이러한 분변성대장균 측정 방식은 하천 이용자들이 안전한 친수활동을 영위하는데 있어 적절한 수질 정보를 제공하지 못한다. 그러므로 분변성대장균을 예측하는 모델을 개발하고, 이를 이용하여 실시간 분변성대장균 정보를 생성하여 하천 이용자들에게 제공할 필요가 있다. 본 연구에서는 친수활동이 활발하게 이루어지는 곳 중 하나인 북한강의 대성리 지점에 대해 데이터 기반 모델을 이용하여 분변성대장균을 예측하였다. 데이터 기반 모델은 물리 기반 모델에서 필요한 지형데이터나 비점오염원 등의 초기 오염물의 양에 대한 데이터를 필요로 하지 않고, 대신 독립변수로 사용되는 기상 및 수질데이터를 필요로 한다. 이러한 기상 및 수질데이터는 기존 기상관측소, 수질관측소에서 매일 자동으로 측정되기 때문에 데이터 기반 모델은 물리 기반 모델에 비해 입력데이터를 구성하기가 쉽다는 장점을 지닌다. 이러한 데이터 기반 모델 중 분류 모델은 회귀 모델과 달리 분변성대장균 농도가 일정 수질기준 이상을 넘는지를 바로 예측할 수 있다. 본 연구에서는 분류 모델 중 높은 예측력을 가진다고 알려진 랜덤포레스트(random forest) 기법을 이용하여 분변성대장균 예측 모델을 개발하였다. 분변성대장균 예측 모델은 주어진 기상 및 수질 조건에 대해 분변성대장균이 200 CFU/100ml가 넘는지를 예측하였다. 예측된 분변성대장균이 기준을 넘는 경우를 2등급, 넘지 않는 경우를 1등급으로 명명하였다. 모델을 개발하기 위하여 북한강 대성리 인근 측정소에서 2010년부터 2015년까지 측정된 기상 및 수질데이터를 수집하였다. 수집한 데이터를 훈련 및 검증데이터로 샘플링하였으며, 이 때 샘플링한 데이터가 기존 데이터가 가지고 있던 등급별 비율을 유지하기 위하여 층화샘플링을 하였다. 본 연구에서는 샘플링에 의한 불확실성을 줄이기 위하여 랜덤하게 50번 샘플링된 각각의 훈련데이터에 대해 모델을 개발하였다. 50개의 모델의 검증 결과를 종합한 결과, 전체 예측률은 0.139로 나타났다.
의료영상에서 사용하는 MIP 볼륨 렌더링은 CT나 MR 등의 볼륨데이터에서 시각 광선으로부터 높은 밝기 값을 추출하여 혈관과 뼈와 같은 환자의 조직을 보여주는 볼륨 렌더링 기법이다. 최근 GPU를 MIP 볼륨 렌더링에 사용하여 대용량 의료영상 데이터에 대해서도 속도가 빠른 렌더링이 가능하게 되었다. 볼륨데이터를 여러 각도에서 관찰하면, 일반적으로 시각과 동일한 방향의 텍스쳐 평면과 볼륨 경계평면이 비스듬하게 교차한다. 볼륨데이터의 외부에는 값이 존재하지 않으므로 경계부분에서 공간 주파수가 높게 나타난다. 기존의 MIP 렌더링은 샘플링 간격이 일정하기 때문에 경계부분에서 데이터의 손실이 생겨 알리아싱이 나타나는 문제가 있다. 화질을 개선하기 위해 샘플링 간격을 줄여 슬라이스수를 증가시킬 수 있으나, 이때는 렌더링 수행 시간이 길어지게 된다. 이 논문에서는 기존 렌더링 결과에 볼륨 경계 평면을 추가로 렌더링하는 방법을 제안한다. 이 방법은 주파수가 높은 경계 부분의 샘플링 간격을 줄여 화질을 향상시킨다. 한편 MIP는 샘플링 순서에 무관하므로 추가된 슬라이스는 기존 렌더링 영상을 손실시키지 않는다. 증가된 슬라이스는 경계부분인 여섯 평면에 불과하므로 렌더링 수행시간에는 거의 영향을 주지 않고 화질을 개선할 수 있다.
최근 소셜 미디어의 숏폼(Short form) 동영상(인스타그램, 틱톡, 유튜브) 시장이 점차 증가하면서 인공지능 영역에서는 이를 활용한 연구가 활발히 진행되고 있다. 대표적인 연구분야로 동영상 내의 패션 상품을 탐지하고 상품 이미지를 검색하는 Video to shop 을 들 수 있다. 이와 같은 동영상 기반 인공지능 모델에서는 Convolution 연산을 사용하여 상품의 특징을 추출한다. 하지만 연산 자원의 제한으로 인해, 동영상의 모든 프레임을 사용하여 특징을 추출하는 것은 현실적으로 불가능하다. 이로 인해, 기존 연구에서는 전체 프레임 중 일부만 샘플링해서 사용하거나, 주제의 특성을 활용한 샘플링 방법을 개발하여 이를 통해 위 문제점을 개선하고, 모델의 성능도 향상시켰다. 기존의 Video to shop 연구에서는 프레임을 샘플링 할 때, 무작위로 일부분의 프레임을 샘플링하거나 균등한 간격으로 샘플링 한다. 하지만 이러한 샘플링 방법은 상품이 존재하지 않는 노이즈 프레임을 샘플링 하면서 패션 상품 검색 모델의 성능을 저하시킨다. 이에 본 연구는 노이즈 프레임을 제거하고 검색 모델의 성능을 향상시키는 샘플링 방법 MF(Missing Fashion items on frame) sampler를 제안한다. MF sampler는 키 프레임 메커니즘(Mechanism)을 발전시켜 자원 한계의 문제점을 개선했다. 또한, 노이즈 탐지 모델을 활용한 노이즈 프레임 제거를 통해 검색 모델의 성능을 향상시켰다. 이와 같은 결과는 실험을 통해 확인되었고, Video to shop 패션 상품 검색에 있어 성능 향상과 효과적인 학습이 가능하다는 것을 확인할 수 있었다.
본 연구는 은행에서 리스크 관리 자동화를 위해 고객의 대출 상환 여부 예측 모델을 제안하고자 한다. 예측 모델로 금융 데이터 같은 정형데이터에서 전통적으로 높은 성능을 보인 의사결정나무기반 모델 LightGBM, CatBoost, XGB 와 최근 제안된 정형데이터에서 사용할 수 있는 설명 가능한 딥러닝 기반 모델 TabNet 간의 성능 비교를 진행한다. 다만, 대출 상환 여부 데이터는 불균형 클래스 데이터로 구성되어있어 샘플링을 진행한다. SMOTE, Random Under Sampling, 혼합 방식을 비교해 가장 높은 성능의 샘플링 기법을 제안한다. 대출 상환 여부 예측 결과 TabNet 모델이 의사결정나무모델들보다 좋은 성능을 보여 정형데이터에서 의사결정나무 기반 모델을 딥러닝 모델이 대체 할 수 있는 가능성을 확인했다.
반도체 제조라인(FAB)은 복잡하고 불확실한 운영환경에서 작동하는 대규모의 제조시스템 중 하나로 반도체 설비 운영을 담당하는 엔지니어들은 직관적이고 신속한 공정 스케줄링을 위해 가중치 기반 스케줄링을 널리 사용하고 있다. 가중치 기반 스케줄링에서 가중치 결정은 FAB 성능에 큰 영향을 미치므로 엔지니어들은 가중치 최적화를 위하여 시뮬레이션 기반 의사결정을 활용할 수 있다. 그러나 대규모 시뮬레이션은 많은 실험 비용을 요구하기 때문에 효과적인 의사결정을 위해서 신중한 실험설계가 요구된다. 본 연구에서는 적은 시뮬레이션 실행 내에서 효율적인 스케줄링을 도출하기 위해 세 가지 샘플링 대안(i.e., Optimal latin hypercube sampling(OLHS), Genetic algorithm(GA), and Decision tree based sequential search (DSS))에 대한 비교연구를 수행하였다. 시뮬레이션 실험을 통해 세 가지 대안이 단일 규칙보다 우수한 성능을 보였고, 그중 GA와 DSS가 최적화를 위한 효과적인 대안이 될 수 있음을 확인하였다.
본 논문에서는 고속무선통신에 널리 사용되고 있는 직교 주파수 분할 다중화 데이터 전송시스템에서 반송파주파수 옵셋(Offset)에 의한 잔류 위상 오차와 샘플링 주파수 옵셋에 의한 잔류 오차를 추적하고 보상하는 알고리즘을 제안한다. 직교 주파수 분할 다중화 시스템에서는 서로 직교성을 가지는 부반송파들이 디지털 데이터에 의해 변조되어 동시에 전송된다 반송파 주파수 옵셋이 존재하는 경우에는 신호 대 잡음비의 감소 그리고 인접 부반송파의 간섭 등이 발생한다. 또한 송신단과 수신단에서의 샘플링 주파수의 차이로 인한 샘플링 시점의 오차도 직교 주파수 분할 다중화 시스템에서 성능저하의 주요한 요인으로 작용한다. 반송파 주파수의 오차와 샘플링 주파수의 오차는 직교 주파수 분할 다중화 시스템에서 중요한 성질중의 하나인 직교성 상실을 초래하며 이는 성능저하의 원인으로 작용하므로 수신단에서는 지속적으로 잔류 오차를 추적하여 보상해 주는 방식의 적용이 필수적이다. 본 논문에서는 주파수 선택적 페이딩 무선 채널 환경에서 파일롯 데이터뿐만 아니라 채널이득 정보 및 페이로드 데이터를 주파수 오차 추정에 반영하여 추정오차를 줄이고 이 추정 값을 주파수 오차 보상에 반영하여 성능 향상을 달성할 수 있는 방식을 제안한다.
최근 학계, 산업계 등에서 접하는 기존의 문제를 머신러닝을 통해 해결하려는 시도가 증가하고 있다. 이에 따라 이탈, 사기탐지, 장애탐지 등 일반적이지 않은 상황을 머신러닝으로 해결하기 위한 다양한 연구가 이어지고 있다. 대부분의 일반적이지 않은 환경에서는 데이터가 불균형하게 분포하며, 이러한 불균형한 데이터는 머신러닝의 수행과정에서 오류를 야기하므로 이를 해결하기 위한 불균형 데이터 처리 기법이 필요하다. 본 논문에서는 머신러닝을 위한 불균형 데이터 처리 방법을 제안한다. 제안하는 방법은 샘플링 방법을 중심으로 다수 클래스(Major Class)의 모집단 분포를 효율적으로 추출하도록 검증하여 머신 러닝을 위한 불균형 데이터 문제를 해결한다. 본 논문에서는 성능평가를 통해 제안하는 기법이 기존 기법에 비해 성능이 우수함을 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.