3차원으로 구성되어 있는 실세계를 보다 효과적이고 신속하게 모니터링하기 위해서는 변화된 지역의 정확한 위치정보 획득과 변화 결과의 빠른 도출을 위한 자동화 방안이 필요하다. 일반적으로 변화탐지를 위해 사용되어 온 항공사진이나 위성영상은 자료 획득에 있어 날씨와 같은 자연환경의 영향을 많이 받으며, 자동으로 변화탐지를 수행하는데 많은 문제점을 안고 있다. 반면에 항공 LiDAR 시스템은 영상시스템과는 달리 날씨 등에 영향을 상대적으로 적게 받으며, 지형지물에 대한 3차원 좌표 정보를 직접 획득하기 때문에 자동으로 처리하기에 매우 효율적이다. 본 연구에서는 항공 LiDAR 데이터만을 이용하여 도시지역의 시공간적 변화를 자동으로 탐지하는 방법을 연구 하였다. 변화탐지의 대상이 도시지역이므로 객체를 기반으로 다양한 변수를 사용하여 변화탐지를 수행하였다. 연구에 사용된 데이터는 서로 다른 시기에 획득된 항공 LiDAR 데이터이며, 두 데이터간의 변화탐지를 위해 먼저 상호정합을 수행하였으며, 개별 객체를 추출하기 위해 필터링과 Grouping 과정을 수행하였다. 마지막으로 Grouping된 객체를 대상으로 모양, 면적, 높이 변화를 비교하여 변화를 탐지하였다. 객체의 외곽선과 내부 영역의 모양을 표현하는 형상계수를 사용하므로 수평방향의 객체에 대한 기하학적인 모양 변화를 탐지할 수 있었으며, 객체의 높이값을 비교함으로써 수직방향으로의 변화도 탐지할 수 있었다. 본 연구에서 수행한 객체 기반의 변화탐지 방법은 91.67%의 전체 정확도를 획득하였다.
스트리밍 데이터 분석에서 개념 변화가 일어나는 시점을 정확히 탐지하는 것은 분류 모델의 성능을 유지하는 데 있어서 매우 중요한 작업이다. 오류율은 스트리밍 데이터에서 개념 변화 탐지를 위해 많이 사용되는 척도이다. 그러나 0과 1로 이루어진 이진 값만으로 예측 결과를 묘사하는 것은 분류 모델의 행동 패턴을 나타내는 유용한 정보의 손실을 초래할 수 있다. 이 논문에서는 오류율을 이용하는 대신에 확률 예측치를 사용하여 분류기의 성능 패턴을 묘사하고 급격한 변화를 탐지하는 효과적인 개념 변화 탐지 방법을 제안한다. 합성데이터와 실제 스트리밍 데이터를 이용한 실험 결과는 제안한 방법이 개념 변화 시점을 탐지하는데 뛰어난 성능을 가짐을 보여준다.
변화탐지는 도시모델의 갱신을 위해 중요한 단계이다. 이에 본 연구는 도시지역의 변화탐지를 위한 라이다데이터로부터 추출한 표면패치의 분류 방법을 제안한다. 제안된 방법의 주요 과정은 (1) 라이다 데이터로부터 생성된 DSM의 차분을 통해 변화영역을 탐지하고, (2) 탐지된 영역의 라이다 점으로부터 표면패치를 구성하고, (3) 구성된 각각의 패치의 종류를 지면 수목, 빌딩으로 분류한다. 제안된 방법을 실측데이터에 적용한 결과를 동일한 지역의 정사영상으로부터 육안검사를 통해 수동 생성된 기준데이터를 이용하여 검증하였다. 패치분류의 성공률은 99%로 평가되었다. 결론적으로 제안된 방법은 변화탐지를 위한 강인하고, 신뢰성이 높고, 효율적인 패치 분류방법으로 판단된다.
변화탐지는 도시모델의 갱신을 위해 중요한 단계이다. 이에 본 연구는 서로 다른 시기에 취득된 라이다 데이터로부터 도시변화를 탐지하는 방법을 제안한다. 제안된 방법의 주요 과정은(1) 라이다 데이터로부터 생성된 DSM의 차분을 통해 변화영역을 탐지하고, (2) 탐지된 영역의 라이다 점으로부터 표면패치를 구성하고, (3) 구성된 각각의 패치의 종류를 지면, 수목, 빌딩으로 분류하고, (4) 패치의 종류 및 속성에 기반하여 변화의 종류를 결정한다. 제안된 방법을 실측데이터에 적용한 결과를 동일한 지역의 정사영상으로부터 육안검사를 통해 수동생성된 참조데이터를 이용하여 검증하였다. 변화탐지의 성공률은 평균적으로 97%로 평가되었다. 결론적으로 제안된 방법은 변화탐지 및 도시모델의 갱신을 위한 신뢰성이 높고, 효율적인 방법으로 판단된다.
XML/HTML 문서와 같이 트리 구조로 표현되는 데이터의 변화 탐지는 NP-hard의 문제로 이에 대한 효율적인 구현은 매우 중요하다. 본 논문에서는 효율적인 변화 탐지를 위해 트리 구조의 데이터를 X-tree로 표현하고 이에 기초한 휴리스틱 알고리즘을 제안한다. X-tree에서는 모든 서브트리의 루트 노드에 서브트리의 구조와 소속 노드들의 데이터들을 128비트의 해시값으로 표현하여 저장함으로 신ㆍ구 버전의 X-tree들에 속한 서브트리들의 비교가 매우 효율적이다. 제시한 변화 탐지 알고리즘에서는 구 버전의 X-tree의 모든 서브트리들에 대해 신 버전의 X-tree에서 동등한 서브트리들을 찾고, 이들에 기초하여 이동 연산이 발생한 서브트리들과 갱신 연산이 발생한 서브트리들을 순차적으로 찾는다. 이때 이동 연산과 갱신 연산으로 대응되는 서브트리는 동등 서브트리로부터 루트 노드로 대응 관계를 확장하는 가운데 발견된다. 이후 깊이 우선으로 검색하면서 나머지 노드들을 대응시킨다. X-tree의 구조적 특징에 기인하여 노드들 간의 비교를 통해 대응 여부를 검사하는 대부분의 기존 연구와는 달리 서브트리의 비교를 통해 대부분의 대응 관계를 결정하므로 효율적인 변화 탐지가 가능하다. 본 알고리즘은 최악의 경우에서도 N을 신ㆍ구 버전 문서의 전체 노드 수라 할 때 O(N)의 시간 복잡도를 갖는다.
현재 발생중인 시계열 데이터에 분산변화가 일어날 경우 이동 분산비를 사용하여 분산 변화점을 빠른 시간 내에 탐지하는 문제를 다룬다. 이동 분산비의 분포로서 F분포와 데이터에 의존하여 추정되는 실증적 분포를 제안한 후 상호비교를 통하여, 어느 방법이 시계열 데이터에서 분산의 변화점을 잘 탐지하는지 연구하였다.
본 논문에서는 저속 네트워크 사용자를 지원하기 위해 기존의 웹 기반 B2B 시스템을 확장하였다. 클라이언트와 서버 사이에 공유된 데이터의 일관성을 보장하기 위해 타임스탬프 트리를 이용한 데이터 변화 탐지 방법을 제안하고, 시뮬레이션을 통해 제안된 방법의 성능을 분석하였다. 타인스탬프 트리의 단말 노드들이 일양 분포로 변경되는 최악의 조건에서, 시뮬레이션 결과는 데이터 갱신율이 $15\%$ 이하일 때 제안된 방법이 순차 탐지보다 효율적임을 보였다. A사의 웹 기반 건설 MRO B2B 시스템을 2004년 4월부터 2004년 8월까지 관찰한 결과에 따르면, 월 평균 데이터 갱신율은 $7\%$ 이하였다. 따라서 제안된 방법은 실질적으로 데이터 변화 탐지 성능을 향상시켰다. 또한 제안된 방법은 서버가 클라이언트들이 복제한 데이터를 저장할 필요가 없기 때문에 서버의 저장 공간 사용이 줄었다.
비정상행위 탐지는 데이터로부터 특징을 추출하여 정상 행위 모델을 만들어, 이 정상 모델로부터 얼마나 벗어나 있는 가를 찾아내어 탐지하는 기법이다. 즉, 특정 기기가 생성하는 데이터를 기반으로 기기의 오류를 탐지하거나 사회망 데이터에서의 사용자 행위 변화를 찾아내어 비정상행위를 탐지하는 데 활용할 수 있다. 본 논문에서는 순위 상관 계수를 이용하여 건물 내의 기기의 비정상적인 데이터를 탐지하고자 한다. 에너지 절약 문제에 대한 관심이 높아짐에 따라 에너지를 효율적으로 사용하기 위해 여러방법들이 제안되었다. IT 기술의 발달과 더불어 공조 시스템(HVAC)이 건물에 도입되어 활용되고 있으며, 이 시스템을 통하여 에너지 소비의 문제점을 찾고 에너지를 효율적으로 관리할 수 있다. 따라서 본 논문은 공조 시스템에 속한 각 기기간의 순위 관계 변화를 관찰함으로써 이상 현상 탐지의 효율성을 높이는 방법을 제안하며, 사회망 데이터 내에서의 비정상행위 탐지 가능성도 함께 제안한다.
데이터 마이닝은 데이터 속에 숨겨져 있는 의미 있는 패턴을 찾아내는 것이다. 이러한 패턴들을 찾아내는 것은 데이터 마이닝에서 중요한 부분을 차지한다. 그러나 기존의 데이터 마이닝 방법들에 사용되는 데이터는 시간의 흐름에 데이터가 변하지 않는다는 특징을 가지고 있다. 시간의 흐름에 따라 변화하는 데이터의 특성을 고려해볼 때 변하지 않는 데이터에서 패턴을 찾아내는 것은 의미가 없는 일이다. 따라서 실시간으로 변하는 데이터의 특성을 고려하고 더불어 적합한 실시간 침입 탐지 방법이 필요하다. 따라서, 본 연구에서는 시간의 흐름에 따라 변하는 데이터에서 규칙을 발견하여 규칙 Set 을 생성하는 실시간 데이터 마이닝 기법을 이용하여 시간의 흐름에 따라 변하는 데이터에 대한 침입을 감시하기 위해 실시간 침입 탐지 시스템에 적용함으로써 보다 효율적으로 침입을 탐지하기 위한 방법을 제시한다.
최근 원격 탐사 영상의 발달로 인해 작지만 중요한 객체에 대한 탐지 가능성이 커져 건물 변화 탐지에 대한 관심이 높아지고 있다. 본 논문은 건물 변화 탐지 방법 중 가장 좋은 성능을 가진 PGA-SiamNet 의 세부 변화 탐지의 정확도가 낮은 한계점을 개선시키기 위해 DensNet 기반의 Dense Siamese Network 를 제안한다. 제안하는 방법은 공개된 WHU 데이터 세트에 대해 변화 탐지 측정 지표인 TPR, OA, F1, Kappa 에 대해 97.02%, 99.5%, 97.44%, 97.16%의 성능을 얻었다. 기존 PGA-SiamNet 에 비해 TPR 은 0.83%, F1 은 0.02%, Kappa 는 0.02% 증가하였으며, 세부 변화 탐지의 성능이 우수함을 확인할 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.