오래 전부터 연료의 가격은 상승하고 있다. 제조업체는 보증을 통해 실용적인 대안을 찾고자 전기와 강력한 바이오 연료를 이용하여 차량의 성장가능을 연구하고 있다. 이제, 이러한 녹색 환경(emission) 관련된 보증은 보증기간이 확장되며, 이러한 보증을 "수퍼 보증" 이라 불린다. 본 논문의 주요 결과는 라돈 변환의 역행렬을 보증공간의 수치를 줄이기 위해 사용되며, 응용 프로그램 및 RBF 네트워크를 사용하여 대략적인 이변량의 보증 기능에 새로운 방법을 제시한다. 이 방법은 다음과 같은 단계로 구성되어 있다. 첫째, 라돈 변환을 이용하여, 이변량 보증 함수의 1차원 함수를 줄일 수 있다. 둘째, 1 차원 함수의 각 신경 서브 네트워크와 신경 네트워크 기법을 사용하여 근사할 수 있다. 셋째, 이러한 신경 sub-networks 형태로 최종 근사 신경망 함께 결합 된다. 넷째, 라 돈 변환의 역함수 값을 사용 하여 최종 근사 신경 네트워크에 우리가 주어진 함수 근사화를 얻을 수 있다. 또한, 우리는 자동차 회사의 일부 그린 보증 데이터를 가지고 위의 방법을 적용한다.
영상의 특징을 나타내는 방법의 하나인 투영은 영상의 근사화된 형상 및 위치 정보 등의 많은 유용한 정보를 포함하고 있다. 그러나 투영을 영상 검색을 위한 방법으로 사용할 경우, 사용되는 색인 데이터 량이 많고, 에디터 베이스의 영상 크기에 따라 토영된 벡터의 길이가 달라진다는 단점이 있다. 이에 본 논문에서는 투영기법이 안고 있는 이러한 문제점을 극복하는 방법으로 데이터베이스 영상을 투영한 후 투영 벡터의 국부화를 통하여 영상의 지역적 특성이 반영되도록 하였으며, 색인 데이터 량을 주리기 위하여 투영된 벡터의 분산 값을 색인 데이터로 활용하였다. 제안된 방법은 검색 시 투영 기법의 장점을 수용함과 동시에 영상의 통계적 특성을 활용할 수 있을 뿐 아니라 시스템 구현 시 질의 시간 내에 응답을 얻을 수 있다는 이점이 있다.
본 논문에서는 NURBS (Non-Uniform Rational B-Splines) 곡면 근사에 기반하여 거리 데이터로부터 3차원 곡면 모델을 생성하는 기법을 제안한다 입력으로 이용되는 거리 데이터는 연결 정보가 알려지지 않고 정렬되지 않은 일반적인 3차원 점들의 집합으로 가정한다 제안하는 알고리듬은 초기 모델 추정, 계층적 모델 표현, NURBS 곡면 네트워크 생성의 3단계로 나뉘어진다 초기 모델 추정 단계에서는 K-평균 군집화 기법을 이용하여 다각형면과 삼각형으로 표현되는 근사 모델을 생성하고, 계층적 트리 구조를 이용하여 초기 모델을 표현한다. 계층적 트리 구조로 부터 생성된 사각형면 모델에 의하여 $G^1$ 연속인 NURBS 곡면 네트워크를 효율적으로 생성한다. 제안하는 알고리듬은 초기 모델의 계층적 그래프 해석을 통하여 곡면 네트워크 형성에 필요한 계산량을 감소시켰으며, 또한 정확한 NURBS 제어점 추정을 통하여 근사 오차를 감소시킨다. 모의 실험 결과 거리 데이터로 부터 초기 모델과 다양한 해상도의 NURBS 곡면 네트워크가 효과적으로 생성되었으며 생성된 NURBS 곡면 모델의 근사 오치는 무시할 수 있는 수준임이 관찰되었다.
3D 컴퓨터 그래픽스 분야에서 사용되는 표면모델은 일반적으로 매우 복잡하고 방대한 양의 다각형 조각들로 구성된다. 이러한 표면 모델들은 사실감을 높일 수 있지만 지나치게 많은 데이터 양으로 인해 많은 문제들을 야기시킬 수 있다. 따라서 모델의 원래 모양을 가능하면 유지하면서 방대한 양의 데이터를 효과적으로 감소시킬 수 있는 방법이 필요하다. 본 논문에서는 지역표면의 기하학적 특성을 잘 보존할 수 있는 에지 비용함수를 제안한다. 또한 병합에 기반 한 반복적인 에지 축약을 기본 연산으로 하는 표면 간략화 알고리즘을 구현한다. 병합에 기반 한 축약방법은 메모리를 효율적으로 사용할 수 있게 하여 실시간 데이터 전송을 요하는 응용 시스템에 매우 효과적으로 적용될 수 있다. 제안하는 알고리즘을 표면모델에 적용시켜 간략화를 수행 한 결과 기존의 알고리즘에 비해 높은 품질의 근사모델을 얻을 수 있었으며 원래 모델의 세부적인 모양을 잘 보존할 수 있었다.
최근, 사회의 요구의 다양성, 고도화에 동반하여 지도정보 시스템에 대한 수요가 증가하고 있다. 이 시스템을 구축할 때, 지도 중에서 각 선도형이 갖는 방대한 데이터를 어떻게 압축하여 시스템에 입력하여, 축적할까하는 것이 문제가 된다. 자동차의 네비게이션 등에 이용하는 도로지도에 한해서는, 도로의 접속관계만 유지된다면, 원래의 도로지도와 다소 차이가 있다고 하여도 충분히 유효하다. 본 연구에서는 이 네비게이션을 목적으로 한, 시가지의 도로망 지도에 대하여, 특징점 추출과 직선 근사를 이용한 데이터 압축법을 제안한다.
본 논문에서는 3차원 인체 형상 스캔 데이터로부터 팔, 다리형상을 복원하는 방법을 제시한다. 이 방법에서는 팔, 다리 스캔 데이터의 대략적인 형상을 나타내는 기반 곡면과 자세한 세부 현상을 나타내는 displacement 맵의 이중구조로 형상을 복원한다. 팔, 다리 부분의 스캔 데이터 형상은 골격을 따라 스윕하는 타원체로 근사되며, 이 타원체 스윕을 부드럽게 감싸는 envelope 곡면으로 기반 곡면을 생성한다. 타원체 스윕의 envelope 곡면은 빠른 계산을 위해 골격을 따라 추출되는 타원의 스윕 곡면으로 근사된다. 기반 곡면에 대한 스캔 데이터 점들의 displacement는 각 단면 타원으로의 매핑을 통해 스칼라 값으로 구해지며, 다단계 스플라인 함수를 이용하여 매개화된 displacement 맵을 구성한다. 이 과정에서 복원된 형상 위의 점들은 해당하는 타원체 상으로 매핑된다. 본 방법을 통하여 팔, 다리의 간결한 형상 표현을 추출할 수 있으며, 매핑된 타원체를 이용하여 형상을 빠르고 사실적으로 변형할 수 있다.
본 논문에서는 드라마 동영상의 의미 분절화(Semantic segmentation)를 위한 멀티 채널 기반 비모수적 베이지만 방법론을 소개한다. 기존 방법론은 매우 한정적인 특징만을 이용하여 분절화를 시도하거나 이미지 채널이나 오디오 채널과 같은 단일 채널에서만 유효한 방법론을 이용하여 데이터 분석을 시도하였기에, TV 드라마와 같이 예측할 수 없는 변화를 보여주는 스트림 데이터에 적용하기에는 어려움이 많았다. 이와 같은 단점을 극복하기 위해 우리는 주어진 동영상을 단일 모달리티의 채널로 분할한 후 각 채널 별로 분절화를 시도하고 각 채널의 분절 결과를 동적으로 결합하여 주어진 동영상에서의 의미 분절화를 근사하는 방법을 개발하였다. 제안 방법은 실제 TV 동영상의 의미 분절화에 적용되었으며 인간 평가자에 의한 의미 변화 구간과의 비교를 통해 그 성능을 확인하였다.
리니어 컴프레서를 위한 폐루우프 센서리스 스트로크 제어시스템이 구성되었다. 피스톤 위치를 정확히 알아내기 위해 모터 매개변수를 피스톤 위치와 모터 전류의 함수로 추정하였다. 이 매개변수 데이터는 ROM 테이블에 저장한 뒤 차 후 피스톤 위치를 정확히 알아내는데 사용된다. 또한, 추정된 모터 매개변수의 데이터 크기를 줄이기 위해 2차원 곡면 함수로 근사화 하는 작업을 수행하였다. 실험을 통해 본 제어 방식이 리니어 컴프레서에 유용하게 사용될 수 있음을 보였다.
본 논문에서는 퍼지 추론 기반의 다항식 RBF 뉴럴네트워크(Polynomial Radial Basis Function Neural Network; pRBFNN)를 설계하고 PSO(Particle Swarm Optimization) 알고리즘을 이용하여 모델의 파라미터를 동정한다. 제안된 모델은 "IF-THEN" 형식으로 기술되는 퍼지 규칙에 의해 조건부, 결론부, 추론부의 기능적 모듈로 표현된다. 조건부의 입력공간 분할에는 HCM 클러스터링에 기반을 두어 구조가 결정되며, 기존에 주로 사용된 가우시안 함수를 RBF로 이용하고, 원뿔형태의 선형 함수를 제안한다. 또한 입력공간 분할시 데이터 집합의 특성을 반영하기 위해 분포상수를 각 입력마다 고려하여 설계함으로서 공간 분할의 정밀성을 높인다. 결론부에서는 기존 상수항의 연결가중치를 다항식 형태로 표현하는 pRBFNN을 제안한다. 제안한 모델의 성능을 평가하기 위해 Box와 Jenkins가 사용한 가스로 시계열 데이터를 적용하고, 기존 모델과의 근사화와 일반화 능력에 대하여 토의한다.
제안한 Taylor모델 개념은 단지 입출력 데이터만을 이용하여 제어기를 설계하기 위해 사용되는데, Taylor모델의 매개변수는 입출력 데이터들을 사용하여 추정되고 제어기는 Taylor모델을 통하여 얻어진다. Taylor모델 근사화의 정확성은 관측창의 크기와Taylor모델의 차수가 커짐에 따라 좋아진다. Taylor모델을 이용한 전력계통의 안정화를 위해 LQR 제어기가 제안되고 컴퓨터 시뮬레이션을 통해 기존의 방법과의 성능을 비교한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.