센서 네트워크는 제한된 에너지를 가지는 작은 노드들로 구성이 된다. 이 센서 네트워크에서 가장 큰 에너지 손실을 가져오는 부분은 RF통신 부분이라 할 수 있다. 해양 센서 네트워크는 통신 매체로 음파를 사용하기 때문에 RF를 사용하는 센서 네트워크보다 통신하는데 더 많은 에너지를 소모한다. 센서 네트워크에서 통신 횟수를 줄여 에너지 효율을 높이는 방법으로 네트워크 내 집계 연산이나 필터링 등이다. 해양환경에서 데이터 값들이 유사한 층을 가지고 있다. 이 유사층에서 네트워크 내 집계 연산과 필터링의 의미를 살펴보겠다. 해양 센서 네트워크는 기존의 토플로지와 다른 구조를 가지고 있다. 새로 제안하는 구조에 어떠한 개념과 기능이 있는지를 살펴본 후 센서 노드들 임계값을 사용하여 센싱된 데이터 값이 유사한 구간을 클러스터로 묶고 묶여진 클러스터 내에서 어떻게 데이터를 전송할 방법을 제안한다.
XML(Extensible Markup Language)은 인터넷 상에서 데이터 표현과 교환을 위한 표준으로 자리 잡고 있다. 웹의 발전과 함께 XML문서들이 정보 검색, 문서 관리, 데이터 마이닝 등의 응용에서 폭 넓게 사용되면서 구조적으로 정보가 풍부한 이러한 문서들을 자동으로 처리하고 검색하는 기술들이 요구되고 있다. 본 연구에서는 XML 문서 의 구조와 내용을 고려하여 유사한 문서들을 검색하는 새로운 방법을 제안한다. XML 문서의 구조적 유사성은 간단한 스트링 매칭 기법으로 찾고, 문서 내용의 유사성은 문서 요소(element)들의 이름과 경로를 고려한 가중치를 통해 찾는 방법으로 전체의 시간 복잡도는 비교되는 두 문서의 크기에 선형적으로 비례한다.
Fuzzy C-Means(FCM) 알고리즘은 초기 군집 중심의 개수와 위치에 따라 군집 결과의 성능차이가 많이 나타난다. 하지만 일반적인 경우에 군집 중심의 개수는 분석가의 주관에 의해 결정되고, 임의적으로 결정되기 때문에 원래 데이터의 구조와는 무관하게 수행되어 최적화된 군집화 수행을 실행하지 못하는 경우가 발생하게 된다. 따라서 본 논문에서는 원래의 데이터의 구조에 좀더 근접한 퍼지 군집화를 수행하기 위하여 격자를 바탕으로 한 데이터의 밀도를 이용한 FCM을 제안하고, 이러한 밀도 기반 FCM에 의해 결정된 군집의 합병 기법을 제안하였다. N-차원의 데이터 공간을 N-차원의 격자로 나누고, 초기 군집 중심의 개수와 위치는 각 격자의 밀도를 바탕으로 결정된다. 초기화 이후에 각 격자 내부에서 FCM을 이용하여 군집화를 수행하고, 계속해서 이웃 격자의 군집결과에 대하여 군집간의 유사도 측도를 이용하여 군집 합병을 수행함으로써 데이터의 자연적인 구조에 근접한 군집화를 수행하였다. 제안된 군집화 합병 기법의 향상된 성능은 UCI Machine Learning Repository 데이터를 이용하여 확인하였다.
생명정보 대량 획득기술의 하나인 마이크로어레이(microarray)는 DNA와 각종 유전자 연구에 사용되는 도구로 확립되면서, 생명정보학(Bioinformatics)분야의 발전에 크게 기여하였다. 그러나 마이크로어레이는 생명정보학분야의 핵심기술 중 하나로 발전하였음에도 불구하고 실험으로 생성되는 데이터는 형태가 다양하고 매우 복잡한 형태를 갖기 때문에 데이터의 공유나 저장에서 많은 어려움을 겪고 있다. 본 논문에서는 마이크로어레이 데이터의 관리를 원활하게 하기위한 XML 기반의 표준 포맷인 MAGE-ML스키마에서 구조적으로 유사한 엘리먼트가 반복적으로 나타나는 특징과 대다수의 엘리먼트들이 특정 엘리먼트의 자식으로만 온다는 구조적 특징을 이용하여, MAGE-ML의 스키마를 단순화 하고 저장구조를 효율적으로 설계하는 방법을 제안한다. 이 방법에서 인라인 기법(Inlining Technique)을 이용한 스키마의 단순화와 새롭게 제시하는 엘리먼트의 구조적 형태를 기준으로 분류하는 기법을 이용한다. 이를 통하여 데이터베이스 스키마는 간략화 되며 테이블조인의 횟수가 줄어들고 성능은 향상된다.
XML은 통합된 데이터 모델을 지원하기 위한 언어로, 특정 분야의 데이터에 대한 친환 및 통합의 필요성이 증대되어지고 있다. 일반적으로 데이터 교환은 다양한 공급자에 의해 독립적으로 운용 및 서비스됨으로서 개별적으로 데이터를 수집해야 하며 재배포 과정 또한 어렵다. 따라서 데이터 재배포 과정을 간소화하고 데이터 교환의 최적화를 위해 데이터 통합을 위한 재구성 방법이 필요하다. 본 논문에서는 특정 분야의 유사한 구조로 구성된 여러 문서를 입력받아 하나의 통합된 문서로 재구성할 수 있는 시스템을 제안한다. 제안된 시스템은 색인기법을 기반으로 추출된 정보를 하나의 문서로 매핑하기 위해 데이터 사전을 선계하고, 하나의 통합된 문서를 점진적인 과정을 통하여 재구성한다 따라서 재구성된 문서는 재배포 과정을 간소화할 수 있으며, 데이터 교환의 최적화는 물론 전자문서교환(EDI)에 있어서 정보교환 능력을 증가시킬 수 있다.
최근 BERT와 같은 트랜스포머 (Transformer) 기반의 모델이 natural language understanding (NLU)와 같은 여러 자연어 처리 태스크에서 좋은 성능을 보인다. 이러한 모델은 여전히 대용량의 학습을 요구한다. 일반적으로, 데이터 증강 기법은 low-resource 환경을 개선하는 데 도움을 준다. 최근 생성 모델을 활용해 합성 데이터를 생성해 데이터를 증강하는 시도가 이루어졌다. 이러한 방법은 원본 문장과 의미론적 유사성을 훼손하지 않으면서 어휘와 구조적 다양성을 높이는 것을 목표로 한다. 본 논문은 task-oriented 한 어휘와 구조를 고려한 데이터 증강 방법을 제안한다. 이를 위해 검색 모델과 사전 학습된 생성 모델을 활용한다. 검색 모델을 사용해 학습 데이터셋의 입력 문장과 유사한 문장 쌍을 검색 (retrieval) 한다. 검색된 유사한 문장 쌍을 사용하여 생성 모델을 학습해 합성 데이터를 생성한다. 본 논문의 방법론은 low-resource 환경에서 베이스라인 성능을 최대 4% 이상 향상할 수 있었으며, 기존의 데이터 증강 방법론보다 높은 성능 향상을 보인다.
이미지, 비디오, 오디오와 같은 멀티미디어 데이터들은 텍스트기반의 데이터에 비하여 대용량이고 비정형적인 특성때문에 검색이 어렵다. 또한 멀티미디어 데이터의 특징은 행렬이나 벡터의 형태로 표현되기 때문에 완전일치 검색이 아닌 유사 검색을 수행하여 원하는 이미지와 유사한 이미지를 검색해야 한다. 본 논문에서는 멀티미디어 데이터 검색에 클러스터링과 인덱싱 기법을 같이 적용하여 유사한 이미지는 인접 디스크에 클러스터하고 이 클러스터에 접근하는 인덱스를 구축함으로써 이미지 근처의 클러스터를 찾아 빠른 검색 결과를 제공하는 유사 검색방법을 제시한다. 본 논문에서는 트리 유사 구조의 인덱스 대신 해싱 방법을 이용하며 검색시 I/O 시간을 줄이기 위해 오브젝트를 가진 클러스터 위치를 찾는데 한번의 I/O를 사용하고 이 클러스터를 읽기 위해 연속적인 파일 I/O를 사용하여 클러스터를 찾는 비용을 최소화한다. 클러스터 인덱싱 접근은 클러스터링을 생성하는 알고리즘과 해싱 기법의 인덱싱을 이용함으로써 고차원 데이터가 갖는 차원의 문제를 해결하며 클러스터링 또는 인덱싱 만을 이용하는 내용기반의 이미지 검색보다 효율적인 검색 적합성을 보인다.
생명체 내에서 기능 수행 시 각종 물질들이나 단백질들끼리 상호결합을 해야 한다. 이런 결합성을 결정짓는 것들이 단백질의 3차원 구조이기 때문에 단백질 구조연구는 중요하다. 이 논문에서는 단백질 구조데이터 및 관련된 구조정보의 통합된 데이터베이스를 구축하고 웹 환경에서 질의된 단백질과 유사성 비교를 진행하여 그 결과 및 연관된 정보를 검색하여 체계적으로 정보를 제공하는 단백질 구조 비교시스템을 제안한다. 제안 시스템을 구축하기 위하여 공개용 단백질 구조데이터 저장소인 Protein Data Bank의 플랫파일에서 필수적인 구조데이터정보만을 추출하여 여기에서 단백질의 하위구조 생성 알고리즘을 적용하여 데이터베이스를 구축한다. 사용자가 인터넷을 통하여 진행한 질의는 하위구조처리 모듈을 통하여 하위구조를 생성하고 구조유사부분에 대해 RMSD값이 계산되고 이와 연관된 구조정보의 검색이 진행 된 후 체계적으로 출력화면에 보여준다. 제안 시스템은 단백질의 전체적인 서열과 구조 정보를 이용하지 않고서, 단백질 기능을 결정하는 핵심영역을 포함하는 표면을 효과적으로 비교함으로써 기존의 구조비교 시스템보다 빠른 검색과 상세한 분석을 지원한다.
단백질의 구조는 단백질의 기능과 밀접한 연관을 가지고 있으며 단백질 구조비교는 단백질의 모티프와 패밀리를 결정하고 나아가서 그들의 기능을 파악하는데 매우 중요한 역할을 한다. 이 논문에서는 단백질 구조데이터 및 관련된 문헌 데이터의 통합된 데이터베이스를 구축하고 웹 환경에서 질의된 단백질과 유사성 비교를 진행하여 그 결과 및 연관된 문헌데이터를 검색하여 체계적으로 정보를 제공하는 단백질 분석시스템을 제안한다. 제안 시스템을 구축하기 위하여 현재까지 가장 큰 단백질 구조데이터의 저장소인 Protein Data Bank의 플랫파일 데이터에 대해 분석을 진행하고 여기에서 단백질의 구조비교 알고리즘에 필수적인 구조데이터정보를 추출하여 새로운 구조비교에 사용되는 엔트리 플랫 파일을 만들어서 데이터베이스를 구축한다 이러한 엔트리에 연관된 분석정보 데이터는 데이터베이스 스키마를 작성하여 문헌정보 데이터베이스를 구축한다. 따라서 사용자가 인터넷을 통하여 진행한 질의는 구조비교엔진을 통하여 유사부분과 RMSD값이 계산되고 이와 연관된 문헌정보의 검색이 진행된 후 체계적으로 출력화면에 보여준다. 제안 시스템은 기존의 구조비교시스템보다 빠른 검색을 지원하고 더 훌륭한 분석환경을 제공한다.
본 연구는 소셜 빅데이터에 기반을 둔 유명인과 브랜드의 이미지 유사도가 광고효과를 예측할 수 있는 결정변수가 될 수 있는지를 파악하기 위해, 광고효과 예측모형을 생성하고 빅데이터 분석기법인 기계학습 방법을 통해 그 타당도를 검증하는 것을 목적으로 하였다. 이를 위해 SNS상의 키워드 네트워크 구조에 기반하여 유명인-브랜드 이미지 유사도를 정량화하고, 학습 데이터를 통해 이미지 유사도를 독립변수로, 광고효과 데이터를 종속변수로 하는 다중회귀모형을 반복 실시하여 광고효과 예측모형을 생성하였다. 이렇게 생성된 예측모형의 정확도를 판단하기 위해 예측 데이터에서 얻은 광고효과 예측값과 비교 기준으로서의 서베이값을 비교한 결과, 타당도를 판단하는 기준치인 75%의 분류 정확도를 보였으므로 본 광고효과 예측 모델링의 타당성은 확보된 것으로 입증되었다. 본 연구는 유명인-브랜드 이미지 유사성 구조를 소셜 네트워크 구조로 설명하고 그 효과를 기계학습을 통한 예측 모델링으로 검증하여 빅데이터 기반 모델링 연구에 새로운 방법론적 대안과 방향을 제시하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.