• Title/Summary/Keyword: 데이터셋 정제

Search Result 43, Processing Time 0.026 seconds

Reading Comprehension requiring Discrete Reasoning Over Paragraphs for Korean (단락에 대한 이산 추론을 요구하는 한국어 기계 독해)

  • Kim, Gyeong-min;Seo, Jaehyung;Lee, Soomin;Lim, Heui-seok
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.439-443
    • /
    • 2021
  • 기계 독해는 단락과 질의가 주어졌을 때 단락 내 정답을 찾는 자연어 처리 태스크이다. 최근 벤치마킹 데이터셋에서 사전학습 언어모델을 기반으로 빠른 발전을 보이며 특정 데이터셋에서 인간의 성능을 뛰어넘는 성과를 거두고 있다. 그러나 이는 단락 내 범위(span)에서 추출된 정보에 관한 것으로, 실제 연산을 요구하는 질의에 대한 응답에는 한계가 있다. 본 논문에서는 기존 범위 내에서 응답이 가능할 뿐만이 아니라, 연산에 관한 이산 추론을 요구하는 단락 및 질의에 대해서도 응답이 가능한 기계 독해 모델의 효과성을 검증하고자 한다. 이를 위해 영어 DROP (Discrete Reasoning Over the content of Paragraphs, DROP) 데이터셋으로부터 1,794개의 질의응답 쌍을 Google Translator API v2를 사용하여 한국어로 번역 및 정제하여 KoDROP (Korean DROP, KoDROP) 데이터셋을 구축하였다. 단락 및 질의를 참조하여 연산을 수행하기 위한 의미 태그를 한국어 KoBERT 및 KoELECTRA에 접목하여, 숫자 인식이 가능한 KoNABERT, KoNAELECTRA 모델을 생성하였다. 실험 결과, KoDROP 데이터셋은 기존 기계 독해 데이터셋과 비교하여 단락에 대한 더욱 포괄적인 이해와 연산 정보를 요구하였으며, 가장 높은 성능을 기록한 KoNAELECTRA는 KoBERT과 비교하여 F1, EM에서 모두 19.20의 월등한 성능 향상을 보였다.

  • PDF

POC : Establishing Dataset for Artificial Intelligence-based Crack Detection (POC : 인공지능 기반 균열 탐지를 위한 데이터셋 구축)

  • Kim, Ji-Ho;Kim, Gyeong-Yeong;Kim, Dong-Ju
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.45-48
    • /
    • 2022
  • 건축물 안전 점검은 대부분 전문가의 현장 방문을 통한 육안검사다. 그중 균열 검사는 건물 위험도를 나타내는 중요한 지표로써 발생 위치, 진행성, 크기를 조사하는데, 최근 균열 조사 방식에 대해 객관성과 체계성을 보완할 딥러닝 개발이 활발하다. 그러나 균열 이미지는 외부 현장에 모양, 규모도 많은 종류라 도메인이 다양해야 하는데 대부분 제한된 환경과 실제적인 균열 검사와는 무관한 데이터로 구성되어 실효적이지 않다. 본 연구에서는 균열 조사에 적합하고 Wild 환경에 적용 가능한 POC 데이터셋을 소개한다. 기존 균열 공인 데이터셋 4종의 특징과 한계점을 분석을 토대로 고해상도 이미지로써 균열의 세부 특징을 담았고 균열 유사 환경과 조건들을 추가 촬영해 균열 검출에 강인하게 학습되도록 지향하였다. 정제 및 라벨링 작업을 거친 POC 데이터 셋은 균열 검출모델인 YOLO-v5으로 성능을 실험하였고, mAP(mean Average Precision) 75.5%로 높은 검출률을 보였다. POC 데이터셋으로 더욱 도메인에 적응적(Domain-adapted)인 인공지능 모델을 개발하여 건물, 댐, 교량 등 각종 대형 건축물에 대한 안전하고 효과적인 안전 관리 도구로써 활용할 것을 기대한다.

  • PDF

Benchmark Dataset Generation for 360-degree Image Applications (360° 영상 응용을 위한 벤치마크 데이터 생성 연구)

  • Lee, Jongsung;Lee, Yeejin
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2021.06a
    • /
    • pp.112-115
    • /
    • 2021
  • 최근 가상현실 및 증강 현실에 대한 관심도가 높아지면서, 깊이 추정, 객체 인식, 영상 분할 등의 다양한 컴퓨터 비전 알고리즘을 360° 영상에 적용하는 연구가 활발히 진행되고 있다. 이 중, 다수의 RGB 카메라를 활용하여 3 차원 정보를 추출하는 깊이 추정 기술은 보다 나은 몰입감을 제공하기 위한 핵심 기술이다. 그러나 깊이 추정 알고리즘의 객관적 성능 평가를 위한 정제된 360° 영상 데이터셋은 극히 부족하며, 이로 인하여 관련 분야 연구에 한계가 있다. 따라서 본 논문에서는 객관적인 알고리즘 성능 평가가 가능하며, 정제된 360° 동영상 데이터셋을 제안하고, 추후 다양한 360° 영상 응용 알고리즘 개발에 활용하고자 한다.

  • PDF

Dataset construction and Automatic classification of Department information appearing in Domestic journals (국내 학술지 출현 학과정보 데이터셋 구축 및 자동분류)

  • Byungkyu Kim;Beom-Jong You;Hyoung-Seop Shim
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.01a
    • /
    • pp.343-344
    • /
    • 2023
  • 과학기술 문헌을 활용한 계량정보분석에서 학과정보의 활용은 매유 유용하다. 본 논문에서는 한국과학기술인용색인데이터베이스에 등재된 국내 학술지 논문에 출현하는 대학기관 소속 저자의 학과정보를 추출하고 데이터 정제 및 학과유형 분류 처리를 통해 학과정보 데이터셋을 구축하였다. 학과정보 데이터셋을 학습데이터와 검증데이터로 이용하여 딥러닝 기반의 자동분류 모델을 구현하였으며, 모델 성능 평가 결과는 한글 학과정보 기준 98.6%와 영문 학과정보 기준 97.6%의 정확률로 측정되었다. 향후 과학기술 분야별 지적관계 분석 및 논문 주제분류 등에 학과정보 자동분류 처리기의 활용이 기대된다.

  • PDF

KcBERT: Korean comments BERT (KcBERT: 한국어 댓글로 학습한 BERT)

  • Lee, Junbum
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.437-440
    • /
    • 2020
  • 최근 자연어 처리에서는 사전 학습과 전이 학습을 통하여 다양한 과제에 높은 성능 향상을 성취하고 있다. 사전 학습의 대표적 모델로 구글의 BERT가 있으며, 구글에서 제공한 다국어 모델을 포함해 한국의 여러 연구기관과 기업에서 한국어 데이터셋으로 학습한 BERT 모델을 제공하고 있다. 하지만 이런 BERT 모델들은 사전 학습에 사용한 말뭉치의 특성에 따라 이후 전이 학습에서의 성능 차이가 발생한다. 본 연구에서는 소셜미디어에서 나타나는 구어체와 신조어, 특수문자, 이모지 등 일반 사용자들의 문장에 보다 유연하게 대응할 수 있는 한국어 뉴스 댓글 데이터를 통해 학습한 KcBERT를 소개한다. 본 모델은 최소한의 데이터 정제 이후 BERT WordPiece 토크나이저를 학습하고, BERT Base 모델과 BERT Large 모델을 모두 학습하였다. 또한, 학습된 모델을 HuggingFace Model Hub에 공개하였다. KcBERT를 기반으로 전이 학습을 통해 한국어 데이터셋에 적용한 성능을 비교한 결과, 한국어 영화 리뷰 코퍼스(NSMC)에서 최고 성능의 스코어를 얻을 수 있었으며, 여타 데이터셋에서는 기존 한국어 BERT 모델과 비슷한 수준의 성능을 보였다.

  • PDF

Enhancing Classification Model Performance through Noise Data Refinement (노이즈 데이터 정제를 통한 분류모델 성능 향상)

  • Unkuk Jeong;Seungshik Kang
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2024.05a
    • /
    • pp.559-562
    • /
    • 2024
  • 자연어 기반의 분류모델을 개발할 때 높은 성능을 획득하기 위해서는 데이터의 품질이 중요한 요소이다. 특히 무역상품 국제 분류체계 HS-CODE에서 상품명을 기반으로 HS코드를 분류할 때, 라벨링 된 데이터의 품질에 의해서 분류모델의 성능이 좌우된다. 하지만 현실적으로 확보 가능한 데이터셋에는 데이터 라벨링 오류나 데이터로 활용하기에 특징점이 부족한 데이터들이 다수 존재하기도 한다. 본 연구에서는 분류모델 학습 데이터의 정제 방법론으로, 딥러닝 기반 노이즈 검출 알고리즘을 제안한다. 분류 대상의 특징점이 분류 경계값 주변에 존재한다면 분류하기 모호한 노이즈 데이터일 가능성이 높다고 가정하고, 해당 노이즈 데이터를 검출하는 방법으로 딥러닝 기술을 활용한다. 해당 경계값 노이즈 검출 알고리즘으로 데이터를 정제한 뒤 학습모델의 성능비교 결과, 기존 대비 우수한 분류 정확도를 기록하였다.

AI Model-Based Automated Data Cleaning for Reliable Autonomous Driving Image Datasets (자율주행 영상데이터의 신뢰도 향상을 위한 AI모델 기반 데이터 자동 정제)

  • Kana Kim;Hakil Kim
    • Journal of Broadcast Engineering
    • /
    • v.28 no.3
    • /
    • pp.302-313
    • /
    • 2023
  • This paper aims to develop a framework that can fully automate the quality management of training data used in large-scale Artificial Intelligence (AI) models built by the Ministry of Science and ICT (MSIT) in the 'AI Hub Data Dam' project, which has invested more than 1 trillion won since 2017. Autonomous driving technology using AI has achieved excellent performance through many studies, but it requires a large amount of high-quality data to train the model. Moreover, it is still difficult for humans to directly inspect the processed data and prove it is valid, and a model trained with erroneous data can cause fatal problems in real life. This paper presents a dataset reconstruction framework that removes abnormal data from the constructed dataset and introduces strategies to improve the performance of AI models by reconstructing them into a reliable dataset to increase the efficiency of model training. The framework's validity was verified through an experiment on the autonomous driving dataset published through the AI Hub of the National Information Society Agency (NIA). As a result, it was confirmed that it could be rebuilt as a reliable dataset from which abnormal data has been removed.

KOMUChat: Korean Online Community Dialogue Dataset for AI Learning (KOMUChat : 인공지능 학습을 위한 온라인 커뮤니티 대화 데이터셋 연구)

  • YongSang Yoo;MinHwa Jung;SeungMin Lee;Min Song
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.2
    • /
    • pp.219-240
    • /
    • 2023
  • Conversational AI which allows users to interact with satisfaction is a long-standing research topic. To develop conversational AI, it is necessary to build training data that reflects real conversations between people, but current Korean datasets are not in question-answer format or use honorifics, making it difficult for users to feel closeness. In this paper, we propose a conversation dataset (KOMUChat) consisting of 30,767 question-answer sentence pairs collected from online communities. The question-answer pairs were collected from post titles and first comments of love and relationship counsel boards used by men and women. In addition, we removed abuse records through automatic and manual cleansing to build high quality dataset. To verify the validity of KOMUChat, we compared and analyzed the result of generative language model learning KOMUChat and benchmark dataset. The results showed that our dataset outperformed the benchmark dataset in terms of answer appropriateness, user satisfaction, and fulfillment of conversational AI goals. The dataset is the largest open-source single turn text data presented so far and it has the significance of building a more friendly Korean dataset by reflecting the text styles of the online community.

Collecting valid facial image dataset using face recognition (얼굴 인식기를 통한 커스텀 데이터의 효율적 수집)

  • Choi, Hee-jo;Kim, Sang-Joon;Lee, Yu-jin;Park, Kyung-moo;Kim, Chung-hwa;Park, Goo-man
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.255-256
    • /
    • 2020
  • 인물에 대한 얼굴 이미지 데이터를 수집할 때 유효하지 않은 데이터를 수작업으로 걸러내는 것은 많은 시간과 인력의 투자를 필요로 한다. 얼굴 데이터 셋을 생성할 때 FaceNet을 거쳐 불필요한 정보들을 미리 걸러내고, 사람이 직접 얼굴 데이터의 유효성을 체크하는 수고를 덜어 얼굴 데이터 셋 생성에 있어서의 번거로움을 줄이고자한다. 본 논문에서는 FaceNet을 통해서 얼굴 이미지 데이터에 대한 데이터 수집 시, 더욱 좋은 성능으로 정제된 데이터 셋을 생성하고자 하였다.

  • PDF

Learning data production technique for visual optimization of generative models (생성모델의 시각적 최적화를 위한 학습데이터 제작기법)

  • Cho, Hyeongrae;Park, Gooman
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • fall
    • /
    • pp.13-14
    • /
    • 2021
  • 본 논문은 생성모델의 학습데이터 제작기법에 대한 실험 및 결과와 향후 관련 연구의 방향을 기술한다. GAN으로 대표되는 생성모델이 아티스트에게 얼마만큼의 만족도와 영감을 주는지를 비교 실험 및 평가하기 위해서는 정제된 학습데이터가 필요하다. 하지만 현실적으로 아티스트의 작품은 데이터 세트를 만들기에는 그 수가 적고 인공지능이 학습하기에도 정제되어있지 않다. 2차 가공작업을 통하여 아티스트의 원본 작업과 유사한 데이터 세트의 구축은 생성모델의 성능향상을 위해 매우 중요하다. 연구의 결과 생성모델이 표현하기 어려운 스타일의 작가 작품을 선정한 뒤 최적의 학습데이터를 만들기 위한 다양한 실험과 기법을 통해 구축한 데이터 세트를 생성모델 알고리즘에 적용하고 실험을 통해 창작자의 작품제작 의도인 작가 진술에 최대한 유사한 이미지의 생성과 더 나아가 작가가 생각하지 못했던 창조적 모방의 결과물을 도출하였고 작가평가를 통해 높은 만족도를 얻었다.

  • PDF