• Title/Summary/Keyword: 데이터기반연구

Search Result 14,178, Processing Time 0.044 seconds

Study of Data-Driven Problem Solving SW Education Program using Micro:bit. (마이크로비트를 활용한 데이터 기반 문제해결 SW교육 방안 연구)

  • Oh, SeungTak;Yu, HeaJin;Kim, BongChul;Kim, JongHun
    • 한국정보교육학회:학술대회논문집
    • /
    • 2021.08a
    • /
    • pp.25-30
    • /
    • 2021
  • With the introduction of AI education in the 2022 Revised Curriculum emphasizing the need for data related education, it is necessary to improve students' data based problem solving skills. This study seeks to study SW education methods to improve students' data based problem solving skills in accordance with these needs. Based on the ADDIE model, the demand analysis survey was conducted on teachers to analyze their needs. Based on the results of the demand analysis, we designed education programs under the theme of data based problem solving skills using microbit. In this study, we raise the importance of data based problem solving and the need for its capabilities. Subsequent studies need to reveal how data based problem solving SW education will demonstrate significant effects on problem solving skills.

  • PDF

A study on data collection environment and analysis using virtual server hosting of Azure cloud platform (Azure 클라우드 플랫폼의 가상서버 호스팅을 이용한 데이터 수집환경 및 분석에 관한 연구)

  • Lee, Jaekyu;Cho, Inpyo;Lee, Sangyub
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.07a
    • /
    • pp.329-330
    • /
    • 2020
  • 본 논문에서는 Azure 클라우드 플랫폼의 가상서버 호스팅을 이용해 데이터 수집 환경을 구축하고, Azure에서 제공하는 자동화된 기계학습(Automated Machine Learning, AutoML)을 기반으로 데이터 분석 방법에 관한 연구를 수행했다. 가상 서버 호스팅 환경에 LAMP(Linux, Apache, MySQL, PHP)를 설치하여 데이터 수집환경을 구축했으며, 수집된 데이터를 Azure AutoML에 적용하여 자동화된 기계학습을 수행했다. Azure AutoML은 소모적이고 반복적인 기계학습 모델 개발을 자동화하는 프로세스로써 기계학습 솔루션 구현하는데 시간과 자원(Resource)를 절약할 수 있다. 특히, AutoML은 수집된 데이터를 분류와 회귀 및 예측하는데 있어서 학습점수(Training Score)를 기반으로 보유한 데이터에 가장 적합한 기계학습 모델의 순위를 제공한다. 이는 데이터 분석에 필요한 기계학습 모델을 개발하는데 있어서 개발 초기 단계부터 코드를 설계하지 않아도 되며, 전체 기계학습 시스템을 개발 및 구현하기 전에 모델의 구성과 시스템을 설계해볼 수 있기 때문에 매우 효율적으로 활용될 수 있다. 본 논문에서는 NPU(Neural Processing Unit) 학습에 필요한 데이터 수집 환경에 관한 연구를 수행했으며, Azure AutoML을 기반으로 데이터 분류와 회귀 등 가장 효율적인 알고리즘 선정에 관한 연구를 수행했다.

  • PDF

Design for Haddop-based Platform to Improve Io T-based Big Data Processing Efficiency (IoT 기반 빅데이터 효율성 향상을 위한 하둡기반 플랫폼 설계)

  • Jang, Kyungsung;Bae, Sang Hyun
    • Journal of Integrative Natural Science
    • /
    • v.13 no.3
    • /
    • pp.114-119
    • /
    • 2020
  • IoT 및 사물인터넷 기반 빅데이터 시스템을 구축하는 경우 발생하는 빈번한 전송에 따른 데이터 오류율과 자원의 비효율적 이용율을 극복하기 위하고 오픈소스기반 하둡시스템의 문제점을 극복하기 위한 본 연구에서는 순수 하둡을 기반으로 적용된 결과를 분석하고 하둡 2.x대 버전을 기준으로 빅데이터 시스템의 용량을 산정한 가이드를 제시하고 용량 산정의 기준을 에코 소프트웨어 적용 플랫폼을 제안한다.

Identifying Research Trends in Big data-driven Digital Transformation Using Text Mining (텍스트마이닝을 활용한 빅데이터 기반의 디지털 트랜스포메이션 연구동향 파악)

  • Minjun, Kim
    • Smart Media Journal
    • /
    • v.11 no.10
    • /
    • pp.54-64
    • /
    • 2022
  • A big data-driven digital transformation is defined as a process that aims to innovate companies by triggering significant changes to their capabilities and designs through the use of big data and various technologies. For a successful big data-driven digital transformation, reviewing related literature, which enhances the understanding of research statuses and the identification of key research topics and relationships among key topics, is necessary. However, understanding and describing literature is challenging, considering its volume and variety. Establishing a common ground for central concepts is essential for science. To clarify key research topics on the big data-driven digital transformation, we carry out a comprehensive literature review by performing text mining of 439 articles. Text mining is applied to learn and identify specific topics, and the suggested key references are manually reviewed to develop a state-of-the-art overview. A total of 10 key research topics and relationships among the topics are identified. This study contributes to clarifying a systematized view of dispersed studies on big data-driven digital transformation across multiple disciplines and encourages further academic discussions and industrial transformation.

A study on spatial indexing for level of detail data (레벨별 상세화 데이터를 지원하는 공간 인덱싱에 대한 연구)

  • 권준희;윤용익
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10a
    • /
    • pp.97-99
    • /
    • 2001
  • 최근 웹 기반 혹은 모바일 기반의 지리정보시스템과, 높은 품질의 공간데이터에 대한 요구가 증대하고 있다. 이를 해결하기 위해서는 레벨별 상세화를 지원하는 데이터가 제공되어야 하며, 이러만 데이터를 효율적으로 처리하는 공간 인덱싱이 필요하다. 그러나, 레벨별 상세화 데이터를 지원하는 공간 인데싱 기법에 대한 기존 연구는 일부 일반화 연산자만을 지원하고 레벨별 데이터간 일관성을 고려하지 않는다는 문제점을 가진다. 본 연구에서는 이러한 문제를 극복하고자 일관성이 보장되는 맵 일반화 연산자를 모두 지원하는 공간 인덱싱 기법을 제안한다. 이를 통해 레벨별 상세화를 지원하는 데이터가 보다 효과적으로 다루어질 수 있다는 의의를 가진다.

  • PDF

A Study about the Concept of Data Literacy based on Digital Humanities (인문학 기반 데이터 리터러시 개념에 대한 연구)

  • Han, Sang Woo
    • Journal of the Korean Society for information Management
    • /
    • v.35 no.4
    • /
    • pp.223-236
    • /
    • 2018
  • The purpose of this study is to suggest the concept of data literacy and its detailed competencies based on humanities focused on LIS. To do this, we define the concept of data literacy by comparing and analyzing researches related data literacy, data information literacy, and digital literacy in domestic and foreign. And we design the basic 11 elements of data literacy based on digital humanities concepts. The result of this study is expected to be used as a basic data when design henceforward data literacy framework.

A study on the implementation of XML-based Digital Library : MARC to XMLMARC (XML기반 디지털도서관 구현에 관한 연구 : XMLMARC시스템 구축을 중심으로)

  • 조윤희
    • Proceedings of the Korean Society for Information Management Conference
    • /
    • 2000.08a
    • /
    • pp.79-82
    • /
    • 2000
  • 본 연구는 XML기반 디지털도서관 구현을 위한 선행연구로서, 디지털도서관의 출현과 MARC 포맷의 이용현황에 관한 이론적인 검토와 MARC에서 XMLMARC로의 변환 사례를 검토하였다. 또한 XML기반 디지털도서관 통합서비스를 실천하려면, MARC 데이터의 표준 서지 생성, 웹 자원을 포함한 데이터의 자동생성, 벤더와의 데이터 교환, ILS에서 ILS로의 데이터 교환 환경의 구축이 선행되어야 함을 제안하였다.

  • PDF

Design and Implementation of Dictionary-based Column Name Standardization System (사전기반 항목명 표준화 시스템 설계 및 구현)

  • Shin, Su-Mi;Moon, Young-Su
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.621-624
    • /
    • 2021
  • 최근 빅데이터에 대한 관심이 높아지면서 분석을 위해 필요한 데이셋의 표준화에 대한 중요성이 강조되고 있다. 데이터 표준화를 위해서는 업무 처리에 필요한 모든 데이터의 명명 규칙을 규정하고 그 기준에 따라 표준 명칭을 부여하여야 한다. 본 연구에서는 사전을 기반으로 하는 항목명 표준화 시스템을 제안하였다. 제안한 시스템은 공개된 표준단어사전을 활용하여 유의어를 포함한 참조 사전을 구축하고 이를 기반으로 표준사전을 구축하여 표준 항목명을 제공한다. 기 구축된 데이터셋의 항목명을 입력하거나 사용자가 원하는 새로운 항목명을 입력하면 항목명 표준화 시스템은 표준화된 한글 항목명과 영문 항목명, 그리고 테이블 설계에 사용하는 영문 약어명을 출력한다. 본 연구에서 제안한 시스템을 테이블 설계에 활용하거나 기 구축된 데이터셋을 표준화하는데 적용하면 일관된 데이터 해석이나 관리가 가능할 것으로 기대된다.

  • PDF

BERT-based Data Augmentation Techniques for Korean Coreference Resolution (한국어 상호참조해결을 위한 BERT 기반 데이터 증강 기법)

  • Kim, Kihun;Lee, Changki;Ryu, Jihee;Lim, Joonho
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.249-253
    • /
    • 2020
  • 상호참조해결은 문서 내에 등장하는 모든 멘션 중에서 같은 의미를 갖는 대상(개체)들을 하나의 집합으로 묶어주는 자연어처리 태스크이다. 한국어 상호참조해결의 학습 데이터는 영어권에 비해 적은 양이다. 데이터 증강 기법은 부족한 학습 데이터를 증강하여 기계학습 기반 모델의 성능을 향상시킬 수 있는 방법 중 하나이며, 주로 규칙 기반 데이터 증강 기법이 연구되고 있다. 그러나 규칙 기반으로 데이터를 증강하게 될 경우 규칙 조건을 만족하지 못했을 때 데이터 증강이 힘들다는 문제점과 임의로 단어를 변경 혹은 삭제하는 과정에서 문맥에 영향을 주는 문제점이 발생할 수 있다. 따라서 본 논문에서는 BERT의 MLM(Masked Language Model)을 이용하여 기존 규칙기반 데이터 증강 기법의 문제점을 해결하고 한국어 상호참조해결 데이터를 증강하는 방법을 소개한다. 실험 결과, ETRI 질의응답 도메인 상호참조해결 데이터에서 CoNLL F1 1.39% (TEST) 성능 향상을 보였다.

  • PDF

Behavior-based Authentication Study By Measuring Cosine Similarity (코사인 유사도 측정을 통한 행위 기반 인증 연구)

  • Gil, Seon-Woong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2020.05a
    • /
    • pp.165-168
    • /
    • 2020
  • 사용자 행위 기반 인증 기술은 다른 인증 기술들에 비해서 인증의 인식률을 높이는데 많은 데이터의 장기간 추출이 필요하다. 본 논문은 터치 센서와 자이로스코프를 이용하여 그동안의 행위 기반 인증 연구에서 사용 되었던 행위 특정 데이터들 중에서 핵심적인 최소한의 데이터들만을 사용하였다. 측정한 데이터들의 검증에는 그간 사용자 행위 기반 인증 연구에서 이용되지 않고 문서 검색의 유사도 측정에 사용되었던 코사인 유사도를 사용하였다. 이를 통해 최소한의 특정 데이터와 기준이 되는 데이터의 코사인 유사도 비교 검증만을 통해서도 인증 범위에 적용되는 임계값을 조절하는 방식을 동해서 최초 EER 37.637%에서 최종 EER 1.897%의 높은 검증 성능을 증명하는데 성공하였다.