As the global business environment is rapidly changing due to the 4th industrial revolution, new jobs that did not exist before are emerging. Among them, the job that companies are most interested in is 'Data Scientist'. As information and communication technologies take up most of our lives, data on not only online activities but also offline activities are stored in computers every hour to generate big data. Companies put a lot of effort into discovering new opportunities from such big data. The new job that emerged along with the efforts of these companies is data scientist. The demand for data scientist, a promising job that leads the big data era, is constantly increasing, but its supply is not still enough. Although data analysis technologies and tools that anyone can easily use are introduced, companies still have great difficulty in finding proper experts. One of the main reasons that makes the data scientist's shortage problem serious is the lack of understanding of the data scientist's job. Therefore, in this study, we explore the job competencies of a data scientist by qualitatively analyzing the actual job posting information of the company. This study finds that data scientists need not only the technical and system skills required of software engineers and system analysts in the past, but also business-related and interpersonal skills required of business consultants and project managers. The results of this study are expected to provide basic guidelines to people who are interested in the data scientist profession and to companies that want to hire data scientists.
Proceedings of the Korea Information Processing Society Conference
/
2011.11a
/
pp.467-470
/
2011
일반 PC의 메인 메모리에 올릴 수 없는 거대 용량의 데이터의 경우 가시화를 통한 해석을 수행하는데 어려움이 많다. 본 논문에서는 이러한 거대 용량의 데이터를 실시간으로 처리하기 위한 분산 환경에서의 가시화 서버의 설계를 제안한다. 본 논문에서 제안하는 가시화 서버는 가시화 관리자, 네트워크 관리자, 데이터 관리자로 구분되며 이들 관리자를 통해 복수의 사용자에 대한 가시화 서비스 제공, 거대 데이터의 실시간 동적 데이터 분할 및 할당 및 실시간 가시화를 지원한다.
Distributed computing helps to efficiently store and process large data on a cluster of multiple machines. The performance of distributed computing is greatly influenced depending on the state of the servers constituting the distributed system. In this paper, we propose a self-diagnosis system that collects log data in a distributed system, detects anomalies and visualizes the results in real time. First, we divide the self-diagnosis process into five stages: collecting, delivering, analyzing, storing, and visualizing stages. Next, we design a real-time self-diagnosis system that meets the goals of real-time, scalability, and high availability. The proposed system is based on Apache Flume, Apache Kafka, and Apache Storm, which are representative real-time distributed techniques. In addition, we use simple but effective moving average and 3-sigma based anomaly detection technique to minimize the delay of log data processing during the self-diagnosis process. Through the results of this paper, we can construct a distributed real-time self-diagnosis solution that can diagnose server status in real time in a complicated distributed system.
Proceedings of the Korean Society for Information Management Conference
/
2017.08a
/
pp.101-101
/
2017
연구 성과물에 대한 접근성을 개선함으로써 다른 연구에도 도움을 주어 또 다른 과학적 발명과 발견에 기여할 수 있어야 한다는 오픈 사이언스의 철학이 전세계적으로 설득력을 얻으면서 연구 데이터 공개 및 출판을 위한 사회적 논의도 활발하게 이루어지고 있다. 또한, 지난 몇년 동안 글로벌 표준식별자 개발, 메타데이터 및 인용 방식의 표준화, 데이터 리포지토리 구축 등 연구 데이터 공개 및 출판을 위한 기술이 비약적으로 발전하고 있다. 전통적으로 학술지 논문의 부속 자료로 여겨지던 데이터(연구 데이터)는 이제 다양한 분야에서 논문과는 독립적으로 데이터 리포지토리에 기탁되어 공개되거나 데이터 저널에 출판되기도 한다. 그러나 학술 논문의 출판과는 달리 데이터 출판은 종종 다른 용어와 의미로 정의되기도 하며 분야마다 데이터 출판의 방식과 구현의 정도가 크게 다르다. 본 연구에서는 현재 진행 중인 데이터 공개 및 출판 이니셔티브를 소개하고 데이터의 공적 이용가능성, 문서화, 인용, 식별자 부여, 검증 및 데이터 출판의 단계별 구현 사례를 분석한다. 또한 국내에서 데이터 출판과 관련하여 수행 중인 과제를 검토한다. 마지막으로, 학술 정보 출판과 연구데이터 관리를 도서관의 기능으로 인식하고 출판과 관련한 다양한 관심사를 논의하는 도서관 중심 이니셔티브를 살펴봄으로써 데이터 출판과 관련한 도서관의 역할을 모색하고자 한다.
Proceedings of the Korea Information Processing Society Conference
/
2023.11a
/
pp.115-118
/
2023
IoT 장치들은 연구, 의료, 금융, 민생 분야 등에 지원하고 있으며 취약한 보안 메커니즘으로 인하여 IoT 네트워크의 개인정보 안전성이 중요해지고 있다. 안전한 다자간 계산은 서로 믿지 않는 참여자라도 데이터 수요자에게 원본 데이터를 누설하지 않는 범위 안에서 다자간 연합 계산 능력을 제공한다. 상업 네트워크나 산업 네트워크에서는 대량의 데이터는 다른 플랫폼들과 통신하기 때문에 기업이나 개인의 개인정보 데이터가 통신 과정에서 도청될 경우 데이터 보유자에게 막대한 경제적이나 잠재적인 손실이 발생한다. 본 논문에서 데이터 통신 과정을 계층별로 정의하여 블록체인에 기반의 안전한 다자간 계산 아키텍처를 제안한다. 제안하는 이키텍처에서 블록체인을 사용함으로써 데이터의 유효성 및 검증 가능성을 보장한다. 인증된 데이터로 안전한 다자간 계산 수행하기 때문에 통신과정의 보안성 및 기밀성도 확보한다. 암호학 및 블록체인 기술의 지속적 발전 및 활성화에 따라 제안하는 아키텍처가 지속적으로 개선할 잠재력이 있다.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.19
no.2
/
pp.151-159
/
2019
As the era of big data, which is the foundation of the fourth industry, has come, most related industries are developing related solutions focusing on the technologies of data storage, statistical analysis and visualization. However, for the diffusion of bigdata technology, it is necessary to develop the prediction analysis technologies using artificial intelligence. But these advanced technologies are only possible by some experts now called data scientists. For big data-related industries to develop, a non-expert, called a citizen data scientist, should be able to easily access the big data analysis process at low cost because they have insight into their own data. In this paper, we propose a system for analyzing bigdata and building business models with the support of easy-to-use analysis system without knowledge of high-level data science. We also define the necessary components and environment for the prediction analysis system and present the overall service plan.
Data scientists are new knowledge workers representing the knowledge economy era. Knowledge workers perform unstandardized works that solve ambiguity-intensive problems. Therefore, self-leadership, which emphasizes self-motivated, autonomous judgment and execution, significantly influences their work-related outcomes. Even knowledge workers have high occupational commitment, they usually show low organizational commitment. Knowledge workers' intention to leave is also relatively high due to this reason. This study focused on data scientists' self-leadership, predicted that self-leadership would increase an organization's commitment and intention to leave. Based on the trait activation theory(TAT), the author also confirmed how perceived job autonomy enhances self-leadership influences. Results showed that data scientists' self-leadership significantly lowered intention to leave through organizational commitment and this mediating effect was moderated by perceived job autonomy. This study broadened the theoretical understanding the effects of knowledge workers' self-leadership and presented practical implications for managing data scientists.
The general public is a key stakeholder in the science and technology domain. However, traditional approaches require substantial efforts and resources to analyze how does the general public understand science and technology issues. We applied the topic modeling, a form of text clustering, to the texts about the nuclear power which were posted on an online space in order to explore the general public's thoughts on the issue. This study investigates the extent to which macro-level events influence understandings of the general public on the science and technology issues and weather these changes in understandings are sustained over time. It examines the possibility of applying topic modeling in narrowing a perception gap between the general public and the experts through a near-real-time monitoring of the public interests and perceptions about the science and technology issues.
Proceedings of the Korea Information Processing Society Conference
/
2011.04a
/
pp.1222-1225
/
2011
개인화된 IT 서비스의 트렌드는 학습자를 위한 튜터링 시스템에도 학습자의 능력과 수요를 고려한 개인화된 서비스를 요구하고 있다. 본 연구에서는 지능형 튜터링 시스템을 위해 사용자 프로파일 에이전트(UPA, User Profile Agent) 모델을 제안한다. UPA는 프로세스, 메타데이터, 사용자 인터페이스로 구성되어 있으며, 사용자의 기본 정보와 학력 및 경력 정보, 학습 영역 지식, 개인 능력 측정 정보를 메타데이터에 기반으로 저장한다. 저장된 사용자 프로파일 정보는 에이전트의 프로세스에 의해 가공되어 학습자에게 유용한 정보를 제공할 수 있도록 기여할 수 있다. 향후 본 논문의 모형 설계를 기반으로 이러닝 기술 환경의 변화를 반영한 지능화된 지능형 튜터링 시스템 개발에 기여할 수 있도록 연구 발전시키는 것을 목표로 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.