Proceedings of the Korea Database Society Conference
/
1994.09a
/
pp.213-234
/
1994
고도 정보화 사회로 발전해 감에 따라 사회 전반에서 발생하는 정보들을 컴퓨터에 저장하여 관리하는 정보 관리 시스템들이 많이 개발되고 있다. 특히 컴퓨터 기술의 발달과 통신의 발달은 서로 떨어져 있는 정보 시스템끼리의 정보 교환을 보다 효율적으로 할 수 있게 되어 시스템 통합 환경으로 선도하고 있다. 이에 본 논문에서는 시스템 통합 환경에서 공유 데이타 저장소를 기반으로 하여 지역 데이타베이스를 구축할 수 있는 데이타 모델인 ESR 데이타 모델을 제안하고, 그에 따른 데이타 모델링 방법론을 제안하였다. 또한 공유데이타 저장소를 기반으로 하여 ESR 데이타 모델링을 통한 데이터베이스를 설계할 수 있는 지원도구를 설계하였다.
이제까지 비디오 데이타베이스를 모델링하기 위한 많은 연구들이 수행되었지만 그 모든 모델들에서 다루는 비디오 데이타는 사용자의 개입이 없을 때 항상 미리 정의된 순서로 보여진다는 점에서 정적 데이타 모델로 간주될 수 있다. 주문형 뉴스 서비스, 주문형 비디오 서비스, 디지털 도서관, 인터넷 쇼핑 등과 같이 최신 비디오 정보 서비스를 제공하는 비디오 데이타베이스 응용들에서는 빈번한 비디오 편집이 요구되는데 실시간 처리가 바람직하다. 이를 위해서 기존의 비디오 데이타 내용이 변경되거나 새로운 비디오 데이타가 생성되어야 하지만 이제까지의 비디오 데이타 모델에서는 이러한 비디오 편집 작업이 일일이 수작업으로 수행되어야만 했다. 본 논문에서는 비디오 편집에 드는 노력을 줄이기 위해서 객체지향 데이타 모델에 기반하여 DVID(Dynamic Video Object Data Model)라는 동적 비디오 객체 데이타 모델을 제안한다. DVID는 기존의 정적 비디오 객체뿐만 아니라 사용자의 개입없이도 비디오의 내용을 비디오 데이타베이스로부터 동적으로 결정하여 보여주는 동적 비디오 객체도 함께 제공한다.Abstract A lot of research has been done on modeling video databases, but all of them can be considered as the static video data model from the viewpoint that all video data on those models are always presented according to the predefined sequences if there is no user interaction. For some video database applications which provides with up-to-date video information services such as news-on-demand, video-on-demand, digital library, internet shopping, etc., video editing is requested frequently, preferably in real time. To do this, the contents of the existing video data should be changed or new video data should be created, but on the traditional video data models such video editing works should be done manually. In order to save trouble in video editing work, this paper proposes the dynamic video object data model named DVID based on object oriented data model. DVID allows not only the static video object but also the dynamic video object whose contents are dynamically determined from video databases in real time even without user interaction.
Proceedings of the Korea Database Society Conference
/
1997.10a
/
pp.463-471
/
1997
비디오 데이타는 다양하고 방대한 양의 의미를 포함하고 있어 효율적인 내용기반 검색을 지원하기 위해서는 비디오 데이타를 기술하는 구조적이고 체계화된 형태의 메타데이타가 요구된다. 이러한 메타데이타는 검색 시 색인과 같은 역할을 수행하게 되므로 내용 기반검색의 가장 기본적이고 필수적인 데이타이다. 본 논문에서는 뉴스 응용 분야(News On Demand:NOD)를 적용한 비디오 데이터베이스 시스템의 효율적인 내용 기반 검색을 위한 메타데이타를 분류하고, Rambaugh의 OMT기법을 이용하여 메타데이타를 모델링한 후 질의 유형에 따라 모델의 접근 경로를 검사하여 모델을 검증하였다.
Proceedings of the Korea Institutes of Information Security and Cryptology Conference
/
1992.11a
/
pp.191-200
/
1992
위성망은 정보의 유출이 쉬운 전송로를 가질 뿐만 아니라 다자간에 이루어지는 통신망이므로 정보보호가 요구된다. 본 논문에서는 위성망의 정보 보호모델을 제안하고, 관련된 보호서비스를 제시한다. 본 위성망 보호모델에서는 OSI 참조모델 계층 2에 해당하는 MAC와 LLC부계층들 사이에 SDE 부계층을 두어 데이타의 안전한 교환이 이루어지도록 하며, SDE 부계층에서 제공하는 보호서비스들로는 데이타 비밀보장, 비접속 데이타 무결성, 데이타 발신처 확인, 그리고 접근제어 서비스이다.
Recent massive data generation by genomics and proteomics requires bioinformatic tools to extract the biological meaning from the massive results. Here we introduce ROSPath, a database system to deal with information on reactive oxygen species (ROS)-mediated cell signaling pathways. It provides a structured repository for handling pathway related data and tools for querying, displaying, and analyzing pathways. ROSPath data model provides the extensibility for representing incomplete knowledge and the accessibility for linking the existing biochemical databases via the Internet. For flexibility and efficient retrieval, hierarchically structured data model is defined by using the object-oriented model. There are two major data types in ROSPath data model: ‘bio entity’ and ‘interaction’. Bio entity represents a single biochemical entity: a protein or protein state involved in ROS cell-signaling pathways. Interaction, characterized by a list of inputs and outputs, describes various types of relationship among bio entities. Typical interactions are protein state transitions, chemical reactions, and protein-protein interactions. A complex network can be constructed from ROSPath data model and thus provides a foundation for describing and analyzing various biochemical processes.
The bio-data processing is used for a suitable purpose with bio-signals, which are obtained from human individuals. Recently, there is increasing demand that the bio-data has been widely applied to various applications. However, it is often that the number of data within each class is limited and the number of classes is large due to the property of problem domain. Therefore, the conventional pattern recognition systems and classification methods are suffering form low generalization performance because the system using the lack of data is influenced by noises of that. To solve this problem, we propose a modified additive factor model for bio-data generation, with two factors; the class factor which affects properties of each individuals and the environment factor such as noises which affects all classes. We then develop a classification system through defining a new similarity function using the proposed model. The proposed method maximizes to use an information of the class classification. So, we can expect to obtain good generalization performances with robust noises from small number of datas for bio-data. Experimental results show that proposed method outperforms significantly conventional method with real bio-data.
The most representative approach for efficient storing of XML data is to store XML data in relational databases. The merit of this approach is that it can easily accept the realistic status that most data are still stored in relational databases. This approach needs to convert XML data into relational data or relational data into XML data. The most important issue in the translation is to reflect structural and semantic relations of RDB to XML schema model exactly. Many studies have been done to resolve the issue, but those methods have several problems: Not cover structural semantics or just support explicit referential integrity relations. In this paper, we propose an algorithm for extracting implicit referential integrities automatically. We also design and implement the suggested algorithm, and execute comparative evaluations using translated XML documents. The proposed algorithm provides several good points such as improving semantic information extraction and conversion, securing sufficient referential integrity of the target databases, and so on. By using the suggested algorithm, we can guarantee not only explicit referential integrities but also implicit referential integrities of the initial relational schema model completely. That is, we can create more exact XML schema model through the suggested algorithm.
Statistical database(SDB) are large database primarily collected for purpose of statistical analysis. Commerical database management systems have not been widely used for SDB because of the efficiency problem of storage and access of those systems for SDB. In this paper, we propose SDB management method to use a front-end system to a Relatianal Datebase Management System (RDBMS). We do the design of SM-F system (Stasticical database Management as Front-end system) as a front-end system to a RDBMS. In the system, we use GROS model specially proposed for SDB, and store and manage summary database and meta database to support statistical analysis and to provide users with statistical summary information.
HMM tends to output high probability for not only the proper class data but confusable class data, since the modeling power increases as the number of parameters increases. Thus it may not be helpful for discrimination to simply increase the number of parameters of HMM. We proposed two methods in this paper. One is a CMC(Confusion Likelihood Model Selection Criterion) using confusion class data probability, the other is a new recognition method, RCM(Recognition Using Confusion Models). In the proposed recognition method, confusion models are constructed using confusable class data, then confusion models are used to depress misrecognition by confusion likelihood is subtracted from the corresponding standard model probability. We found that CMC showed better results using fewer number of parameters compared with ML, ALC2, and BIC. RCM recorded 93.08% recognition rate, which is 1.5% higher result by reducing 17.4% of errors than using standard model only.
Metadata IR model has high precision and low recall because the query in Metadata IR model is strict that is, the query can express user information need exactly, while Full-text IR model has low precision and high recall because the query in Full-text IR model is a kind of simple keyword query which expresses user information need roughly. If user can translate one's information need into structured query well, the retrieval result will be improved. However, it is little possible to make relevant query without understanding characteristics of metadata. Unfortunately, most users do not interested in metadata, then they cannot construct well-made structured query. Amount of information contained in metadata is less than text information. In this paper, we suggest hybrid IR model using metadata and text which can provide users with lots of relevant documents by retrieving from metadata field and text field complementarily.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.