• Title/Summary/Keyword: 더블 데크

Search Result 6, Processing Time 0.018 seconds

Proposal of Vertical Direction Deck Delay Time for Efficient Formation of Free Surface of Bottom Deck (효율적 하부데크의 자유면 형성을 위한 수직방향 데크 단차 제안)

  • Seung-Won Jung;Seung-Joong Lee;Jin-Hyuk Song;Young-Ho Kim;Young-Suk Song;Nam-Sun Hwang
    • Explosives and Blasting
    • /
    • v.41 no.4
    • /
    • pp.41-50
    • /
    • 2023
  • This study, a vertical double-deck method using an electronic detonator was applied to increase excavation volume and reduce blast pollution. In the double deck method, there is a possibility that blasting efficiency may be reduced if bottom deck blasting is carried out without the free surface being completely formed after upper deck blasting. And for this reason, the blasting efficiency of the double deck method varies depending on the deck delay time. Therefore, in this study, we proposed four deck delay times applying 1 to 5 times the hole delay time. And blasting efficiency was evaluated according to fragmentation analysis. As a result of the fragmentation evaluation, the fragmentation of pattern 4 (deck delay time = hole delay time×5) was the best, but it was confirmed that fragmentation efficiency increased significantly from pattern 3 (deck delay time = hole delay time×3). Accordingly, it is analyzed that when blasting a vertical double deck, the deck delay time must be at least three times the hole delay time to obtain an efficient blasting effect.

The study on the tunnel double-deck blasting methods using electronic blasting systems (더블데크 전자발파를 이용한 터널 발파공법 개발 연구)

  • Lee, Jong-U;Mun, Hong-Pyo;Kim, Nam-Su;Lee, Gang-Il
    • Magazine of korean Tunnelling and Underground Space Association
    • /
    • v.23 no.4
    • /
    • pp.38-48
    • /
    • 2021
  • 최근 국내 건설현장들은 도심지 근접구간에서 발파진동피해를 최소화하기 위하여 전자뇌관을 이용한 미진동 전자발파공법 적용사례가 증가하고 있는 추세이다. 그러나 미진동 전자발파는 무진동 암파쇄 대체공법으로 경제성은 우수하나 시공현장에서 진동을 제어하는 공법으로 1회 굴진장을 1m 이하로 적용하고 있어 시공속도가 저하되는 문제점이 발생하고 있다. 따라서, 미진동 전자발파 수준의 진동제어와 굴착비 절감 및 시공속도를 높일 수 있는 더블데크 발파공법을 연구 및 시험을 수행하였다. 미진동 전자발파와 더블데크 전자발파 비교 시험결과 진동레벨, 발파효율, 파쇄입도, 여굴량 등이 비슷한 수준으로 평가되어 현장 적용시 굴진장 증대로 인한 공사기간 단축 및 시공비 절감이 가능할 것으로 판단되었다.

Safety Assessment of Double Deck Plate Wall Formwork against Lateral Pressure of Fresh Concrete (콘크리트 측압에 대한 더블 데크플레이트 벽체 거푸집의 안전성 평가)

  • Lee, Hye-Ji;Mun, Ju-Hyun;Yang, Keun-Hyeok
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.225-226
    • /
    • 2023
  • This study examined the lateral deformation of double deck plate wall formworks against the lateral pressure of fresh concrete and then compared with the construction specification.

  • PDF

Experimental Study on Structural Behavior of Double Ribbed Deep-Deck Plate under Construction Loads (시공하중이 작용하는 더블리브 깊은 데크플레이트의 구조거동에 대한 실험적 연구)

  • Heo, Inwook;Han, Sun-Jin;Choi, Seung-Ho;Kim, Kang Su;Kim, Sung-Bae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.7
    • /
    • pp.49-57
    • /
    • 2019
  • Recently, the use of deep deck plate has been increased in various structures, such as underground parking lots, logistics warehouses, because it can reduce construction periods and labor costs. In this study, a newly developed Double Deck (D-deck) plate which can leads to save story heights has been introduced, and experimental tests on a total of five D-deck plates under construction loads have been carried out to investigate their structural performance at construction stage. The loads were applied by sands and concrete to simulate the actual distributed loading conditions, and the vertical deflection of D-Deck and the horizontal deformation of web were measured and analyzed in detail. As a result, it was confirmed that all the D-decks showed very small vertical deflection of less than 5.34 mm under construction loads, which satisfies the maximum deflection limit of L / 180. In addition, the D-Deck plate was found to have a sufficient rigidity to resist construction loads in a stable manner.

Evaluation of friction force varied by non-slip surface patterns of deck (데크의 논슬립가공 표면형태 변이에 따른 마찰성능 변화 평가)

  • Han, Yeonjung;Lee, Ju-Hee;Park, Yonggun;Choi, Yun-Ho;Yeo, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.6
    • /
    • pp.397-405
    • /
    • 2012
  • Installation of deck has been on the rise in Korea recently, but there is little of research on the safety of deck. One of the major factors affecting maneuverability of a pedestrian is frictional force between an outsole of shoe and a surface of the deck. The frictional force is influenced by many factors such as raw material variance of deck, surface convex shape of deck, outsole patterns of shoes, and moist condition of contact surface between deck and shoes. This study focused on evaluating the effect of these factors on the frictional force. Two kinds of deck, which were made of natural wood and wood plastic composite, were used in this study. The surface convex patterns of deck were classified to single nonslip (longitudinal groove processing) and double nonslip (longitudinal and transverse groove processing). Two kinds of shoe outsole patterns, W-shape and rectangle-shape, were used in the tests. Also, the friction tests were carried out at dried surface conditions and water-adsorbed surface condition.

Structural Performance of Double Rip Decks Reinforced with Inverted Triangular Truss Girders (역삼각 트러스 거더로 보강된 더블 골 데크 성능 평가)

  • Son, Hong-Jun;Kim, Young-Ho;Chung, Kyung-Soo;Kim, Dae-Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.6
    • /
    • pp.559-566
    • /
    • 2017
  • This paper proposes a new composite deckplate system reinforced with inverted triangular truss girders(called 'D Deck'), which does not require the use of temporary supports at construction stage. The proposed system retains increased stiffness and strength while keeping the absolute floor height change to a minimum level and can be utilized as floor systems of various types beam members such as the conventional wide-flange and U-shaped composite beams. In order to evaluate the performance of the proposed system, five specimens with a span of 5.5 m were fabricated and tested under field loading conditions consisting of several intermediate steps. The load-deflection curves of each specimen were plotted and compared with the nonlinear three-dimensional finite element analysis results. The comparison showed that the effective load sharing between the truss girders and floor deck occurs and the maximum deflection under construction stage loading is well below the limit estimated by the provisions in Korea Building Code.