• Title/Summary/Keyword: 더블패커

Search Result 4, Processing Time 0.019 seconds

Geochemical Occurrence of Uranium and Radon-222 in Groundwater at Test Borehole Site in the Daejeon area (대전지역 시험용 시추공 지하수내 우라늄 및 라돈-222의 지화학적 산출특성)

  • Jeong, Chan Ho;Ryu, Kun Seok;Kim, Moon Su;Kim, Tae Sung;Han, Jin Suk;Jo, Byung Uk
    • The Journal of Engineering Geology
    • /
    • v.23 no.2
    • /
    • pp.171-186
    • /
    • 2013
  • A drilling project was undertaken to characterize the geochemical relationship and the occurrence of radioactive materials at a test site among public-use groundwaters previously known to have high occurrence of uranium and radon-222 in the Daejeon area. A borehole (121 m deep) was drilled and core rocks mainly consist of two-mica granite, and associated with pegmatite and dykes of intermediate composition. The groundwater samples collected at six different depths in the borehole by a double-packed system showed the pH values ranging from neutral to alkaline (7.10-9.3), and electrical conductivity ranging from 263 to 443 ${\mu}S/cm$. The chemical composition of the borehole groundwaters was of the $Ca-HCO_3(SO_4+Cl)$ type. The uranium and Rn-222 contents in the groundwater were 109-1,020 ppb and 9,190-32,800 pCi/L, respectively. These levels exceed the regulation guidelines of US EPA. The zone of the highest groundwater uranium content occurred at depths of 45 to 55m. The groundwater chemistry in this zone (alkaline, oxidated, and high in bicarbonate) is favorable for the dissolution of uranium into groundwater. The dominant uranium complex in groundwater is likely to be $(UO_2CO_3)^0$ or $(UO_2HCO_3)^+$. Radon-222 content in groundwater shows an increasing trend with depth. The uranium and thorium contents in the core were 0.372-47.42 ppm and 0.388-11.22 ppm, respectively. These levels are higher values than those previously been reported in Korea. Microscopic observations and electron microprobe analysis(EPMA) revealed that the minerals containing U and Th are monazite, apatite, epidote, and feldspar. U and Th in these minerals are likely to substitute for major elements in crystal lattice.

Occurrence of Natural Radioactive Materials in Borehole Groundwater and Rock Core in the Icheon Area (이천지역 시추공 지하수와 시추코어내 자연방사성물질 산출 특성)

  • Jeong, Chan-Ho;Kim, Dong-Wook;Kim, Moon-Su;Lee, Young-Joon;Kim, Tae-Seung;Han, Jin-Seok;Jo, Byung-Uk
    • The Journal of Engineering Geology
    • /
    • v.22 no.1
    • /
    • pp.95-111
    • /
    • 2012
  • This study investigated the relationship between the geochemical environment and the occurrence of natural radioactive materials (uranium and Rn-222) in borehole groundwater at an Icheon site. The drill core recovered from the study site consists mainly of biotite granite with basic dykes. The groundwater samples were collected at four different depths in the borehole using the double-packed system. The pH range of the groundwater was 6.5~8.6, and the chemical type was Ca-$HCO_3$. The ranges of uranium and Rn-222 concentrations in the groundwater were 8.81~1,101 ppb and 5,990~11,970 pCi/L, respectively, and concentrations varied greatly with depth and collection time. The ranges of uranium and thorium contents in drill core were 0.53~18.3 ppm and 6.66~17.5 ppm, respectively. Microscope observations and electron microprobe analyses revealed the presence of U and Th as substituted elements for major composition of monazite, ilmenite, and apatite within K-feldspar and biotite. Although the concentration of uranium and thorium in the drill core was not high, the groundwater contained a high level of natural radioactive materials. This finding indicates that physical factors, such as the degree of fracturing of an aquifer and the groundwater flow rate, have a greater influence on the dissolution of radioactive materials than does the geochemical condition of the groundwater and rock. The origin of Rn-222 can be determined indirectly, using an interrelationship diagram of noble gas isotopes ($^3He/^4He$ and $^4He/^{20}Ne$).

Hydrochemistry and Occurrence of Natural Radioactive Materials within Borehole Groundwater in the Cheongwon Area (청원지역 시추공 지하수의 수리화학 및 자연방사성물질 산출 특성)

  • Jeong, Chan-Ho;Kim, Moon-Su;Lee, Young-Joon;Han, Jin-Seok;Jang, Hyo-Geun;Jo, Byung-Uk
    • The Journal of Engineering Geology
    • /
    • v.21 no.2
    • /
    • pp.163-178
    • /
    • 2011
  • A test borehole was drilled in the Cheongwon area to investigate the relationship between geochemical environment and the natural occurrence of radioactive materials (uranium and Rn-222) in borehole groundwater. The borehole encountered mainly biotite schist and biotite granite, with minor porphyritic granite and basic dykes. Six groundwater samples were collected at different depths in the borehole using the double-packed system. The groundwater pH ranges from 5.66 to 8.34, and the chemical type of the groundwater is Ca-$HCO_3$. The contents of uranium and Rn-222 in the groundwater are 0.03-683 ppb and 1,290-7,600 pCi/L, respectively. The contents of uranium and thorium in the rocks within the borehole are 0.51-23.4 ppm and 0.89-62.6 ppm, respectively. Microscope observations of the rock core and analyses by electron probe microanalyzer (EPMA) show that most of the radioactive elements occur in the biotite schist, within accessory minerals such as monazite and limenite in biotite, and in feldspar and quartz. The high uranium content of groundwater at depths of -50 to -70 m is due to groundwater chemistry (weakly alkaline pH, an oxidizing environment, and high concentrations of bicarbonate). The origin of Rn-222 could be determined by analyzing noble gas isotopes (e.g., $^3He/^4He$ and $^4He/^{20}Ne$).

Geochemical Origins and Occurrences of Natural Radioactive Materials in Borehole Groundwater in the Goesan Area (괴산지역 시추공 지하수의 자연방사성물질 산출특성과 지화학적 기원)

  • Kim, Moon Su;Yang, Jae Ha;Jeong, Chan Ho;Kim, Hyun Koo;Kim, Dong Wook;Jo, Byung Uk
    • The Journal of Engineering Geology
    • /
    • v.24 no.4
    • /
    • pp.535-550
    • /
    • 2014
  • The origins and varieties of natural radioactive materials, including uranium and radon-222, were examined in a drilled borehole extending to a depth of 120 m below the surface in the Goesan area. In addition to core samples, eight groundwater samples were collected at different depths, using a double packer system and bailer, and their geochemical characteristics were determined. Most of the rock samples from the drilled core consisted of granite porphyry, with sedimentary rocks (slate, carbonate, or lime-silicates) and pegmatite occurring in certain sections. The pH of samples varied from 7.8 to 8.4, and the groundwater was of a Na-$HCO_3$type. Uranium and thorium concentrations in the core were < 0.2-14.8 ppm and 0.56-45.0 ppm, respectively. Observations by microscope and an electron probe microanalyzer (EPMA) showed that the mineral containing the natural radioactive materials was monazite contained in biotite crystals. The uranium, which substituted for major elements in the monazite, appeared to have dissolved and been released into the groundwater in a shear zone. Concentrations of Radon-222 in the borehole showed no close relationship with levels of uranium. The isotopes of noble gases, such as helium and neon, would be useful for analyzing the origins and characteristics of the natural radioactive materials.