• Title/Summary/Keyword: 대형 컨테이너운반선

Search Result 13, Processing Time 0.017 seconds

Sensitivity Analysis of Coupled Horizontal and Torsional Vibration of Hull Girder (선체 저차 수평.비틂 연성 고유진동 감도해석)

  • Dae-Seung Cho;Sa-Soo Kim;Doo-Yong Na
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.2
    • /
    • pp.105-113
    • /
    • 1999
  • This paper resents a prediction method of natural frequencies of coupled horizontal and torsional vibration of hull girder based on design sensitivity analysis in case of the changes of system parameters. The sensitivity analysis is formulated applying the direct differentiation method and transfer matrix method. In the analysis, warping, shear deformation due to torsion and the continuity condition at the connected part of open and closed hull section are considered. Using the presented method. The affection for natural frequencies by the change of system parameters, especially cargo and added mass and their centers, is numerically investigated for a real large container carrier.

  • PDF

A case study on the optimal shafting alignment concerning bearing stiffness for 10,100 TEU container carrier (베어링 강성을 고려한 10,100 TEU 컨테이너 운반선의 최적 추진축계 배치에 관한 사례 연구)

  • Lee, Jae-Ung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.3
    • /
    • pp.185-190
    • /
    • 2016
  • Damages of the main engine aftmost bearing and the after stern tube bearing tend to increase due to misalignment. And as the shafting system becomes stiffer due to the large engine power, whereas the hull structure becomes more flexible due to optimization by using high tensile thin steel plates. And this is the reason that more sophisticated shaft alignments are required. In this study, the optimum shafting alignment calculation was carried out, considering the thermal expansion effect, exploiting the sensitivity index, which indicates the reasonable position of forward intermediate shaft bearing for shaft alignment. and as the main subject in this study, the elastic deformation on intermediate shaft and main engine bearings occurred by vertical load of shaft mass were examined thoroughly and analyzed allowable load of bearings, reaction influence numbers of all bearings. As the result, a reliable optimum shafting alignment was derived theoretically. To verify these results, they were referred to the engine maker's technical information of main engine installation and being used shafting alignment programs of both Korean Register of Shipping and Det Norske Veritas, their reliability were reviewed.

A Study on Decision of Minimum Required Channel Width Considering Ship Types by Fast Time Simulation (배속 시뮬레이션 기반의 선종별 최소 항로 폭에 관한 연구)

  • Kim, Hyun-suk;Lee, Yun-sok
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.4
    • /
    • pp.309-316
    • /
    • 2020
  • Waterway design should prioritize appropriate channel width to ensure preferential safe passage for the arrival and departure of vessels. To calculate the minimum channel width required for safe passage a comprehensive review of several factors is required. These factors include vessel maneuverability, determined by vessel size, type and speed; environmental factors such as wind, tide, and wave action; human factors, including personal experience and operator judgment as well as marine traffic and navigation support facilities for decision making. However, the Korean channel width design standard is based only on vessel length, and requires improvement when compared with the standards of PIANC, USA, and Japan. This study aims to estimate the appropriate channel width required for one-way traffic in a straight channel, considering various vessel and environmental factors, using Fast Time Simulation (FTS). When the wind speed is 25 knots, with a current speed of 2 knots and a normal vessel speed of 10 knots FTS shows that a 150K GT Cruise Ship requires a minimum channel width of 0.67-0.91 the vessel length (L), whereas a 120K TEU Container Ship and a 300K DWT VLCC require 0.79-1.17 and 1.02-1.59, respectively. Such results can be used to calculate the minimum channel width required for safe passage as an improved Korean design standard.