• Title/Summary/Keyword: 대한항공

Search Result 4,702, Processing Time 0.033 seconds

A Study on Legal and Regulatory Improvement Direction of Aeronautical Obstacle Management System for Aviation Safety (항공안전을 위한 장애물 제한표면 관리시스템의 법·제도적 개선방향에 관한 소고)

  • Park, Dam-Yong
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.31 no.2
    • /
    • pp.145-176
    • /
    • 2016
  • Aviation safety can be secured through regulations and policies of various areas and thorough execution of them on the field. Recently, for aviation safety management Korea is making efforts to prevent aviation accidents by taking various measures: such as selecting and promoting major strategic goals for each sector; establishing National Aviation Safety Program, including the Second Basic Plan for Aviation Policy; and improving aviation related legislations. Obstacle limitation surface is to be established and publicly notified to ensure safe take-off and landing as well as aviation safety during the circling of aircraft around airports. This study intends to review current aviation obstacle management system which was designed to make sure that buildings and structures do not exceed the height of obstacle limitation surface and identify its operating problems based on my field experience. Also, in this study, I would like to propose ways to improve the system in legal and regulatory aspects. Nowadays, due to the request of residents in the vicinity of airports, discussions and studies on aviational review are being actively carried out. Also, related ordinance and specific procedures will be established soon. However, in addition to this, I would like to propose the ways to improve shortcomings of current system caused by the lack of regulations and legislations for obstacle management. In order to execute obstacle limitation surface regulation, there has to be limits on constructing new buildings, causing real restriction for the residents living in the vicinity of airports on exercising their property rights. In this sense, it is regarded as a sensitive issue since a number of related civil complaints are filed and swift but accurate decision making is required. According to Aviation Act, currently airport operators are handling this task under the cooperation with local governments. Thus, administrative activities of local governments that have the authority to give permits for installation of buildings and structures are critically important. The law requires to carry out precise surveying of vast area and to report the outcome to the government every five years. However, there can be many problems, such as changes in the number of obstacles due to the error in the survey, or failure to apply for consultation with local governments on the exercise of construction permission. However, there is neither standards for allowable errors, preventive measures, nor penalty for the violation of appropriate procedures. As such, only follow-up measures can be taken. Nevertheless, once construction of a building is completed violating the obstacle limitation surface, practically it is difficult to take any measures, including the elimination of the building, because the owner of the building would have been following legal process for the construction by getting permit from the government. In order to address this problem, I believe penalty provision for the violation of Aviation Act needs to be added. Also, it is required to apply the same standards of allowable error stipulated in Building Act to precise surveying in the aviation field. Hence, I would like to propose the ways to improve current system in an effective manner.

Captive Flight Test POD System Design for Effective Development in Weapon System (무기체계의 효과적인 개발을 위한 항공탑재시험용 POD 시스템 설계)

  • Park, JungSoo
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.6
    • /
    • pp.25-31
    • /
    • 2018
  • Captive Flight Test (CFT) is one of the most important tests to acquire data when developing complex weapon systems. In this paper, we introduce the design and test result of our POD system for CFT. POD system uses POD set which consists of left and right POD. The exterior and mass properties of POD set are equal to those of fuel tank for aircraft so that we can omit Airworthiness Certification. Also, we adequately placed inner-equipments in order to acquire data including target image, navigation result and reference data to verify and analyse software algorithm. The POD system for CFT we developed is complex system as both mechanical and electronic factors are applied. As we repeatedly performed CFT, useful and various data for weapon development were acquired.

Block Adjustment with GPS/INS in Aerial Photogrammetry (GPS/INS에 의한 항공사진측량의 블럭조정)

  • Park Woon Yong;Lee Kang Won;Lee Jae One;Jeong Gong Uhn
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.22 no.3
    • /
    • pp.285-291
    • /
    • 2004
  • GPS photogrammetry or the GPS/INS photogrammetry, which are based on the direct measurement of the projection centers and attitude at the moment of camera exposure time through loading the GPS receiver or INS in aircraft. Both photogrammetric methods can offer us to acquire the exterior orientation parameters with only minimum ground control points, even the ground control process could be completely skipped. Consequently, we can drastically reduce the time and cost for the mapping process. In this thesis, test flight was conducted in Suwon area to evaluate the performance of accuracy and efficiency through the analysis of results among the three photogrammetric methods, that is, traditional photogrammetry, GPS photogrammetry and GPS/INS photogrammetry. Test results shows that a large variety of advantages of GPS photogrammetry and GPS/INS photogrammetry against traditional photogrammetry is to be verified. Especially, the number of ground control points for the exterior orientation could be saved more than 70~80%, respectively.

Real-time Obstacle Detection and Avoidance Path Generation Algorithm for UAV (무인항공기용 실시간 장애물 탐지 및 회피 경로 생성 알고리즘)

  • Ko, Ha-Yoon;Baek, Joong-Hwan;Choi, Hyung-Sik
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.6
    • /
    • pp.623-629
    • /
    • 2018
  • In this paper, we propose a real-time obstacle detection and avoidance path generation algorithm for UAV. 2-D Lidar is used to detect obstacles, and the detected obstacle data is used to generate real-time histogram for local avoidance path and a 2-D SLAM map used for global avoidance path generation to the target point. The VFH algorithm for local avoidance path generation generates a real-time histogram of how much the obstacles are distributed in the vector direction and distance, and this histogram is used to generate the local avoidance path when detecting near fixed or dynamic obstacles. We propose an algorithm, called modified $RRT^*-Smart$, to overcome existing limitations. That generates global avoidance path to the target point by creating lower costs because nodes are checked whether or not straight path to a target point, and given arbitrary lengths and directionality to the target points when nodes are created. In this paper, we prove the efficient avoidance maneuvering through various simulation experiment environment by creating efficient avoidance paths.

Prerequisites for Realizing Urban Air Traffic (UAM) and Personal Air Vehicle (PAV) (도심항공교통(UAM)과 개인용 비행체(PAV) 실현화를 위한 선행 조건에 대한 전망)

  • Choi, Jeongho;Choi, Young-Moon
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.12
    • /
    • pp.147-153
    • /
    • 2020
  • This study is aimed at a basic infrastructure for realizing urban air mobility (UAM) and personal air vehicle (PAV), which have recently been high interest as new means of transportation. The development of UAM and PAV technologies is a field of a high added value that the world is competitively pushing for the world. However, the three most fundamental aspects are the establishing an aviation certification system, finding reliable manufacturers having advanced technical abilities, and the training/securing of professional manpower. Above all, the aviation certification system will be established for the first time. Based on the certification system, it will be possible to realize the government's policy goal of introducing new means of transportation, including the production of aircraft and to realize commercialization that meets international standards that satisfy conformity and compliance. In addition, finding reliable manufacturers, fostering professionals, and establishing an educating system for stable supplying of the professionals are main projects to become a leading country in the field.

Deep learning-based Approach for Prediction of Airfoil Aerodynamic Performance (에어포일 공력 성능 예측을 위한 딥러닝 기반 방법론 연구)

  • Cheon, Seongwoo;Jeong, Hojin;Park, Mingyu;Jeong, Inho;Cho, Haeseong;Ki, Youngjung
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.4
    • /
    • pp.17-27
    • /
    • 2022
  • In this study, a deep learning-based network that can predict the aerodynamic characteristics of airfoils was designed, and the feasibility of the proposed network was confirmed by applying aerodynamic data generated by Xfoil. The prediction of aerodynamic characteristics according to the variation of airfoil thickness was performed. Considering the angle of attack, the coordinate data of an airfoil is converted into image data using signed distance function. Additionally, the distribution of the pressure coefficient on airfoil is expressed as reduced data via proper orthogonal decomposition, and it was used as the output of the proposed network. The test data were constructed to evaluate the interpolation and extrapolation performance of the proposed network. As a result, the coefficients of determination of the lift coefficient and moment coefficient were confirmed, and it was found that the proposed network shows benign performance for the interpolation test data, when compared to that of the extrapolation test data.

Hypervelocity Impact Analyses Considering Various Impact Conditions for Space Structures with Different Thicknesses (다양한 두께의 우주 구조물에 대한 다양한 충돌 조건의 초고속 충돌 해석 연구)

  • Won-Hee Ryu;Ji-Woo Choi;Hyo-Seok Yang;Hyun-Cheol Shin;Chang-Hoon Sim;Jae-Sang Park
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.4
    • /
    • pp.43-57
    • /
    • 2023
  • The hypervelocity impact simulations of space objects and structures are performed using LS-DYNA. Space objects with spherical, conical, and hollow cylindrical shapes are modeled using the Smoothed Particle Hydrodynamics (SPH). The direct and indirect impact zones of a space structure are modeled using the SPH and finite element methods, respectively. The Johnson-Cook material model and Mie-Grüneisen Equation of State are used to represent the nonlinear behavior of metallic materials in hypervelocity impact. In the hypervelocity impact simulations, various impact conditions are considered, such as the shape of the space object, the thickness of the space structure, the impact angle, and the impact velocity. The shapes of debris clouds are quantitatively classified based on the geometric parameters. Conical space objects provide the worst debris clouds for all impact conditions.

Development and Application of Drop Impact Tester for Aerospace Structures (항공우주구조물 낙하충격시험기 개발 및 응용)

  • Yesol Shin;Hyejin Kim;Juho Lee
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.3
    • /
    • pp.56-64
    • /
    • 2024
  • In this study, a drop impact tester was developed to comprehensively conduct basic testing and academic research on the drop impact characteristics of aerospace structures. A drop tester enables accurate assessment of the dynamic stresses and deformations that occur when an aircraft collides with the ground, thereby enabling the verification of important design factors, such as safety and mechanical strength. The drop tester consists of an electromagnet to attach and drop the test object, a crane to adjust the drop height of the test object, and a drop support structure for vertical drops. Numerical analysis of the drop test object for the test was performed, and basic tests were performed using the drop impact tester. Through the analysis and test results, the structural shape of the landing gear was analyzed, and the behavior of each part was evaluated.