• Title/Summary/Keyword: 대표 프레임

Search Result 465, Processing Time 0.028 seconds

The Quantitative Analysis of Alternative-Decision in Missile Test: Focusing on Selecting a Foreign Test Site through Data Envelopment Analysis (미사일 시험을 위한 대안결정의 정량적 분석: 자료포락분석을 이용한 국외 시험장 선정을 중심으로)

  • Han, Seung Jo
    • Convergence Security Journal
    • /
    • v.20 no.4
    • /
    • pp.3-12
    • /
    • 2020
  • Although the related regulations or guidelines are not specified in the defense weapon system R&D process, R&D authorities frequently encounter problems that require rational decision-making. If the rational process is not applied in the matter of alternative choice, the project could be disrupted, which can result in longer project periods or more resource provision. In particular, a variety of decision-making methods are needed for test&evaluation of missile R&D. The issue of selecting a test site is one of the representative decision-making problems. If it is needed to determine the priority of multiple sites, Delphi Method and Analytic Hierarchy Process(AHP) will be applied. However, if the input of cost is to be considered, Data Envelopment Analysis(DEA) is more valuable to solve the problem. This paper proposes a solution to handle quantitatively various decision-making problems that can occur in missile flight test, and shows how DEA is applied through a simulated case study of selecting a foreign test site.

Development of a Cloud-Based Infrastructure Engineering Design Platform Prototype (클라우드 기반의 인프라 엔지니어링 설계 플랫폼 프로토타입 개발)

  • Cho, Myung-Hwan;Pyo, Kil Seop;Youn, Seung Wook;Jung, Nahm-Chung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.4
    • /
    • pp.559-569
    • /
    • 2022
  • Infrastructure engineering is a field that supports construction (assembly) as a representative industry that creates high added value and jobs by combining science and technology with knowledge, though its importance is underestimated. According to a report from the Ministry of Land, Infrastructure and Transport (Korea), the value-added rate (65.3%) of the engineering industry and the employment inducement coefficient (14 employees per billion won) are three times higher than in manufacturing. In particular,the forward value chain (such as project management and basic design) accounts for less than 10~15% of the total project cost but determines the overall price and quality of the infrastructure facilities. In this study, a work break-down system, design support module and database development method for road design projects for design platform development is presented. Based on the presented development method, a cloud-based infrastructure design platform's prototype is developed. The developed infrastructure engineering platform is expected to provide a web-based design work environment without time/space restrictions and greatly contribute to winning overseas business orders and securing competitiveness.

AI-based Cybersecurity Solution for Industrial Control System (산업제어시스템을 위한 인공지능 보안 기술)

  • Jo, Bu-Seong;Kim, Mun-Suk
    • Journal of Internet Computing and Services
    • /
    • v.23 no.6
    • /
    • pp.97-105
    • /
    • 2022
  • This paper explains trends in security technologies for ICS. Since ICS is usually applied to large-scale national main infrastructures and industry fields, minor errors caused by cyberattack could generate enormous economic cost. ICS has different characteristic with commonly used IT systems, so considering security threats of ICS separately with IT is needed for developing modern security technology. This paper introduce framework for ICS that analyzes recent cyberattack tactics & techniques and find out trends in Intrusion Detection System (IDS) which is representative technology for ICS security, and analyzes AI technologies used for IDS. Specifically, this paper explains data collection and analysis for applying AI techniques, AI models, techniques for evaluating AI Model.

Image Classification of Damaged Bolts using Convolution Neural Networks (합성곱 신경망을 이용한 손상된 볼트의 이미지 분류)

  • Lee, Soo-Byoung;Lee, Seok-Soon
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.4
    • /
    • pp.109-115
    • /
    • 2022
  • The CNN (Convolution Neural Network) algorithm which combines a deep learning technique, and a computer vision technology, makes image classification feasible with the high-performance computing system. In this thesis, the CNN algorithm is applied to the classification problem, by using a typical deep learning framework of TensorFlow and machine learning techniques. The data set required for supervised learning is generated with the same type of bolts. some of which have undamaged threads, but others have damaged threads. The learning model with less quantity data showed good classification performance on detecting damage in a bolt image. Additionally, the model performance is reviewed by altering the quantity of convolution layers, or applying selectively the over and under fitting alleviation algorithm.

Design and Implementation of Distributed Cluster Supporting Dynamic Down-Scaling of the Cluster (노드의 동적 다운 스케일링을 지원하는 분산 클러스터 시스템의 설계 및 구현)

  • Woo-Seok Ryu
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.2
    • /
    • pp.361-366
    • /
    • 2023
  • Apache Hadoop, a representative framework for distributed processing of big data, has the advantage of increasing cluster size up to thousands of nodes to improve parallel distributed processing performance. However, reducing the size of the cluster is limited to the extent of permanently decommissioning nodes with defects or degraded performance, so there are limitations to operate multiple nodes flexibly in small clusters. In this paper, we discuss the problems that occur when removing nodes from the Hadoop cluster and propose a dynamic down-scaling technique to manage the distributed cluster more flexibly. To do this, we design and implement a modified Hadoop system and interfaces to support dynamic down-scaling of the cluster which supports temporary pause of a node and reconnection of it when necessary, rather than decommissioning the node when removing a node from the Hadoop cluster. We have verified that effective downsizing can be performed without performance degradation based on experimental results.

Dynamic Web Service Composition Support for OSGi Environments (OSGi 환경에서의 동적 웹서비스 조합 기법)

  • Ko, Sung-Hoon;Kim, Eun-Sam;Lee, Choon-Hwa
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.11
    • /
    • pp.145-157
    • /
    • 2009
  • OSGi enables services to be dynamically discovered through its service registry for fostering interactions among themselves, positioning itself as one of the most prominent SOA technologies. Web Services also provide a mature technical base of open business services being employed over the Internet and allow more value-added applications to be built up from component services. In this paper, we propose a new architecture, built on the concept of dynamic service binding, to support interbred service compositions of OSGi and Web Services. Web Services are imported into OSGi domains, and the compositions are described in WS-BPEL language. The support for crossbred compositions of OSGi services and Web Services opens up a new opportunity of a wider range of applications beyond their respective traditional target domains of home gateways in LAN environments and business applications in global Internet environments.

A Data-driven Multiscale Analysis for Hyperelastic Composite Materials Based on the Mean-field Homogenization Method (초탄성 복합재의 평균장 균질화 데이터 기반 멀티스케일 해석)

  • Suhan Kim;Wonjoo Lee;Hyunseong Shin
    • Composites Research
    • /
    • v.36 no.5
    • /
    • pp.329-334
    • /
    • 2023
  • The classical multiscale finite element (FE2 ) method involves iterative calculations of micro-boundary value problems for representative volume elements at every integration point in macro scale, making it a computationally time and data storage space. To overcome this, we developed the data-driven multiscale analysis method based on the mean-field homogenization (MFH). Data-driven computational mechanics (DDCM) analysis is a model-free approach that directly utilizes strain-stress datasets. For performing multiscale analysis, we efficiently construct a strain-stress database for the microstructure of composite materials using mean-field homogenization and conduct data-driven computational mechanics simulations based on this database. In this paper, we apply the developed multiscale analysis framework to an example, confirming the results of data-driven computational mechanics simulations considering the microstructure of a hyperelastic composite material. Therefore, the application of data-driven computational mechanics approach in multiscale analysis can be applied to various materials and structures, opening up new possibilities for multiscale analysis research and applications.

A Study on the Dépaysement of the Animation (애니메이션에 있어서 데페이즈망에 관한 연구)

Exploring an Integrated Garden City Theory Based on East Asian Garden Culture - Centering on Community and Integration - (동아시아 정원문화에 기반한 통합적 정원도시론의 모색 - 공동체성과 통합성을 중심으로 -)

  • Ahn, Myung-June
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.41 no.3
    • /
    • pp.13-26
    • /
    • 2023
  • Landscapes and gardens have emerged as an important medium of practice in contemporary cities. Among them, this paper examines the city through the frame of gardens. This is because gardens are being reconceptualized as a medium of activity for urban residents and have become an important subject of action in urban regeneration and the creation of urban villages. From this perspective, this paper examines and proposes an "integrated garden city theory" as a landscape theory suitable for the contemporary era by focusing on the urban structure and the behavior of urban residents through the medium of gardens, as well as the process and results. This is both a process and a result of looking back at the evolution of landscape for over a century and rethinking the identity of landscape. We first examined garden city theory, noting that Ebenezer Howard and Frederick Law Olmsted's positions on the relationship between gardens and cities were not so different, and that "working and responsive landscapes" were fundamental to cities and the beginning of landscape theory. We also examine how their ideals have not been fully realized in cities over the past century, but the prototype of gardens based on traditional garden culture is now being formed in East Asian cities, and the evolution of landscape theory in response. The conclusion is that a new version of the garden concept should be reestablished as a living infrastructure in our cities, and a new garden city theory is needed to make it work. To this end, each chapter examines three arguments, as follows First, the values of gardens and East Asian garden cultures in contemporary cities are shaped by the themes of community and integrity. Second, Korean communality, represented by apartments, is expressed through gardening and requires the reconciliation of city and life and the role of landscape architecture as a specialized field to support it. Third, we examine and consider an integrated garden city theory as a theory of practice in which city-based, everyday life, and garden mediums, i.e., city, life, and garden, are organic, based on an oriental view of nature. As a result, it is confirmed that contemporary gardens and cities are looking for important elements and values that still need to be rediscovered in East Asian landscape and garden cultures. Although the proposal of an integrated garden city theory cannot guarantee the continuation of landscaping, it can be an opportunity for all fields related to cities, not just landscaping, to collaborate and consider garden cities. Through this, it is hoped that "the concept of garden and city suitable for metropolitan or dense cities, ways to spread and support garden culture based on community, evolution of landscape theory/design theory suitable for lifestyle and terrain conditions, search for sustainable/resilient garden city theory that can respond to climate change, and establishing a new role for landscape in the 21st century" will be seriously considered.

Using the Binomial Option Pricing Model for Strategic Sales of CER's to Improve the Economic Feasibility of CDM projects (이항옵션가격 모형을 활용한 CER 판매전략 구축과 이를 통한 CDM 사업 수익성 향상 방안에 관한 연구)

  • Koo, Bonsang;Park, Jong-Ho;Kim, Cheong-Woon
    • Korean Journal of Construction Engineering and Management
    • /
    • v.15 no.1
    • /
    • pp.111-121
    • /
    • 2014
  • The Clean Development Mechanism (CDM) allows New & Renewable Energy projects to make additional income by selling CER's, which represent the amount of Green House Gases(GHG) that is reduced in the project. However, forward contracts used to hedge fluctuating market prices does not allow projects to sell CER's at a premium. As an alternate approach to maximize CER revenue, CER's are modeled as a 'real option', in which CER's are sold only above the desired sales price. Using the Binomial Option Pricing model, the resultant lattices are used to determine whether to sell, defer or abandon the option at individual nodes. Overlaying Pascal's Triangle on the lattices also enabled the calculation of the annual probabilities for deferring CER sales without incurring downside losses. Application to an actual Landfill Gas project showed increased overall NPV, and that CER sales could be deferred at a maximum of 2 years. The proposed framework allows transparency in the analysis and provides valuable and strategical information when making investment decisions related to CER sales of CDM projects.