• Title/Summary/Keyword: 대표 객체

Search Result 325, Processing Time 0.025 seconds

Abstracted Partitioned-Layer Index: A Top-k Query Processing Method Reducing the Number of Random Accesses of the Partitioned-Layer Index (요약된 Partitioned-Layer Index: Partitioned-Layer Index의 임의 접근 횟수를 줄이는 Top-k 질의 처리 방법)

  • Heo, Jun-Seok
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.9
    • /
    • pp.1299-1313
    • /
    • 2010
  • Top-k queries return k objects that users most want in the database. The Partitioned-Layer Index (simply, the PL -index) is a representative method for processing the top-k queries efficiently. The PL-index partitions the database into a number of smaller databases, and then, for each partitioned database, constructs a list of sublayers over the partitioned database. Here, the $i^{th}$ sublayer in the partitioned database has the objects that can be the top-i object in the partitioned one. To retrieve top k results, the PL-index merges the sublayer lists depending on the user's query. The PL-index has the advantage of reading a very small number of objects from the database when processing the queries. However, since many random accesses occur in merging the sublayer lists, query performance of the PL-index is not good in environments like disk-based databases. In this paper, we propose the Abstracted Partitioned-Layer Index (simply, the APL-index) that significantly improves the query performance of the PL-index in disk-based environments by reducing the number of random accesses. First, by abstracting each sublayer of the PL -index into a virtual (point) object, we transform the lists of sublayers into those of virtual objects (ie., the APL-index). Then, we virtually process the given query by using the APL-index and, accordingly, predict sublayers that are to be read when actually processing the query. Next, we read the sublayers predicted from each sublayer list at a time. Accordingly, we reduce the number of random accesses that occur in the PL-index. Experimental results using synthetic and real data sets show that our APL-index proposed can significantly reduce the number of random accesses occurring in the PL-index.

Metrics Measurement System Supporting Quality Evaluation of Java Program (Java 프로그램의 품질평가를 지원하는 메트릭 측정 시스템)

  • Park, Ok-Cha;Yoo, Cheol-Jung;Chang, Ok-Bae
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.7 no.2
    • /
    • pp.151-164
    • /
    • 2001
  • Java, used as the most representative object-oriented language, isil becoming the popular language for Internet/Intranet based program development. Moreover, it is used for development language in a variety of areas such as component based development language. In the view of reuse and maintenance of developed program, quality evaluation of program is becoming a more important issue. So, metrics measurement for quality evaluation of program that is developed at present including existing Java application is necessary. However, it is necessary that whether existing object-oriented software metrics is suitable on Java program is to be validated So, in this paper, we build an automated metrics measurement system that needs to validate on object-oriented software metrics and wish to support metrics measurement that is to determine it. The purpose of this system is to support a precise quality evaluation tool. In this system, we apply the metrics classified by Briand. Briand classified the metrics by formalizing mathematically them to verify feasibility of existing object-oriented software metrics. Using the proposed system, we can make comparison and analysis of validation on existing object-oriented metrics by calculating quantitative information more rapidly from Java source program. If there is any problem in feasibility of the metrics, we can establish a suitable metrics on Java program by considering reiJ,1forcement of the existing metrics or proposing new metrics.

  • PDF

Performance Enhancement Algorithm using Supervised Learning based on Background Object Detection for Road Surface Damage Detection (도로 노면 파손 탐지를 위한 배경 객체 인식 기반의 지도 학습을 활용한 성능 향상 알고리즘)

  • Shim, Seungbo;Chun, Chanjun;Ryu, Seung-Ki
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.3
    • /
    • pp.95-105
    • /
    • 2019
  • In recent years, image processing techniques for detecting road surface damaged spot have been actively researched. Especially, it is mainly used to acquire images through a smart phone or a black box that can be mounted in a vehicle and recognize the road surface damaged region in the image using several algorithms. In addition, in conjunction with the GPS module, the exact damaged location can be obtained. The most important technology is image processing algorithm. Recently, algorithms based on artificial intelligence have been attracting attention as research topics. In this paper, we will also discuss artificial intelligence image processing algorithms. Among them, an object detection method based on an region-based convolution neural networks method is used. To improve the recognition performance of road surface damage objects, 600 road surface damaged images and 1500 general road driving images are added to the learning database. Also, supervised learning using background object recognition method is performed to reduce false alarm and missing rate in road surface damage detection. As a result, we introduce a new method that improves the recognition performance of the algorithm to 8.66% based on average value of mAP through the same test database.

A Research on Adversarial Example-based Passive Air Defense Method against Object Detectable AI Drone (객체인식 AI적용 드론에 대응할 수 있는 적대적 예제 기반 소극방공 기법 연구)

  • Simun Yuk;Hweerang Park;Taisuk Suh;Youngho Cho
    • Journal of Internet Computing and Services
    • /
    • v.24 no.6
    • /
    • pp.119-125
    • /
    • 2023
  • Through the Ukraine-Russia war, the military importance of drones is being reassessed, and North Korea has completed actual verification through a drone provocation towards South Korea at 2022. Furthermore, North Korea is actively integrating artificial intelligence (AI) technology into drones, highlighting the increasing threat posed by drones. In response, the Republic of Korea military has established Drone Operations Command(DOC) and implemented various drone defense systems. However, there is a concern that the efforts to enhance capabilities are disproportionately focused on striking systems, making it challenging to effectively counter swarm drone attacks. Particularly, Air Force bases located adjacent to urban areas face significant limitations in the use of traditional air defense weapons due to concerns about civilian casualties. Therefore, this study proposes a new passive air defense method that aims at disrupting the object detection capabilities of AI models to enhance the survivability of friendly aircraft against the threat posed by AI based swarm drones. Using laser-based adversarial examples, the study seeks to degrade the recognition accuracy of object recognition AI installed on enemy drones. Experimental results using synthetic images and precision-reduced models confirmed that the proposed method decreased the recognition accuracy of object recognition AI, which was initially approximately 95%, to around 0-15% after the application of the proposed method, thereby validating the effectiveness of the proposed method.

Hierarchical Organization of Embryo Data for Supporting Efficient Search (배아 데이터의 효율적 검색을 위한 계층적 구조화 방법)

  • Won, Jung-Im;Oh, Hyun-Kyo;Jang, Min-Hee;Kim, Sang-Wook
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.2
    • /
    • pp.16-27
    • /
    • 2011
  • Embryo is a very early stage of the development of multicellular organism such as animals and plants. It is an important research target for studying ontogeny because the fundamental body system of multicellular organism is determined during an embryo state. Researchers in the developmental biology have a large volume of embryo image databases for studying embryos and they frequently search for an embryo image efficiently from those databases. Thus, it is crucial to organize databases for their efficient search. Hierarchical clustering methods have been widely used for database organization. However, most of previous algorithms tend to produce a highly skewed tree as a result of clustering because they do not simultaneously consider both the size of a cluster and the number of objects within the cluster. The skewed tree requires much time to be traversed in users' search process. In this paper, we propose a method that effectively organizes a large volume of embryo image data in a balanced tree structure. We first represent embryo image data as a similarity-based graph. Next, we identify clusters by performing a graph partitioning algorithm repeatedly. We check constantly the size of a cluster and the number of objects, and partition clusters whose size is too large or whose number of objects is too high, which prevents clusters from growing too large or having too many objects. We show the superiority of the proposed method by extensive experiments. Moreover, we implement the visualization tool to help users quickly and easily navigate the embryo image database.

Multi-modality MEdical Image Registration based on Moment Information and Surface Distance (모멘트 정보와 표면거리 기반 다중 모달리티 의료영상 정합)

  • 최유주;김민정;박지영;윤현주;정명진;홍승봉;김명희
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.3_4
    • /
    • pp.224-238
    • /
    • 2004
  • Multi-modality image registration is a widely used image processing technique to obtain composite information from two different kinds of image sources. This study proposes an image registration method based on moment information and surface distance, which improves the previous surface-based registration method. The proposed method ensures stable registration results with low registration error without being subject to the initial position and direction of the object. In the preprocessing step, the surface points of the object are extracted, and then moment information is computed based on the surface points. Moment information is matched prior to fine registration based on the surface distance, in order to ensure stable registration results even when the initial positions and directions of the objects are very different. Moreover, surface comer sampling algorithm has been used in extracting representative surface points of the image to overcome the limits of the existed random sampling or systematic sampling methods. The proposed method has been applied to brain MRI(Magnetic Resonance Imaging) and PET(Positron Emission Tomography), and its accuracy and stability were verified through registration error ratio and visual inspection of the 2D/3D registration result images.

Development of Mirror Neuron System-based BCI System using Steady-State Visually Evoked Potentials (정상상태시각유발전위를 이용한 Mirror Neuron System 기반 BCI 시스템 개발)

  • Lee, Sang-Kyung;Kim, Jun-Yeup;Park, Seung-Min;Ko, Kwang-Enu;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.1
    • /
    • pp.62-68
    • /
    • 2012
  • Steady-State Visually Evoked Potentials (SSVEP) are natural response signal associated with the visual stimuli with specific frequency. By using SSVEP, occipital lobe region is electrically activated as frequency form equivalent to stimuli frequency with bandwidth from 3.5Hz to 75Hz. In this paper, we propose an experimental paradigm for analyzing EEGs based on the properties of SSVEP. At first, an experiment is performed to extract frequency feature of EEGs that is measured from the image-based visual stimuli associated with specific objective with affordance and object-related affordance is measured by using mirror neuron system based on the frequency feature. And then, linear discriminant analysis (LDA) method is applied to perform the online classification of the objective pattern associated with the EEG-based affordance data. By using the SSVEP measurement experiment, we propose a Brain-Computer Interface (BCI) system for recognizing user's inherent intentions. The existing SSVEP application system, such as speller, is able to classify the EEG pattern based on grid image patterns and their variations. However, our proposed SSVEP-based BCI system performs object pattern classification based on the matters with a variety of shapes in input images and has higher generality than existing system.

An Efficient Indexing Technique for Location Prediction of Moving Objects in the Road Network Environment (도로 네트워크 환경에서 이동 객체 위치 예측을 위한 효율적인 인덱싱 기법)

  • Hong, Dong-Suk;Kim, Dong-Oh;Lee, Kang-Jun;Han, Ki-Joon
    • Journal of Korea Spatial Information System Society
    • /
    • v.9 no.1
    • /
    • pp.1-13
    • /
    • 2007
  • The necessity of future index is increasing to predict the future location of moving objects promptly for various location-based services. A representative research topic related to future index is the probability trajectory prediction technique that improves reliability using the past trajectory information of moving objects in the road network environment. However, the prediction performance of this technique is lowered by the heavy load of extensive future trajectory search in long-range future queries, and its index maintenance cost is high due to the frequent update of future trajectory. Thus, this paper proposes the Probability Cell Trajectory-Tree (PCT-Tree), a cell-based future indexing technique for efficient long-range future location prediction. The PCT-Tree reduces the size of index by rebuilding the probability of extensive past trajectories in the unit of cell, and improves the prediction performance of long-range future queries. In addition, it predicts reliable future trajectories using information on past trajectories and, by doing so, minimizes the cost of communication resulting from errors in future trajectory prediction and the cost of index rebuilding for updating future trajectories. Through experiment, we proved the superiority of the PCT-Tree over existing indexing techniques in the performance of long-range future queries.

  • PDF

A selective sparse coding based fast super-resolution method for a side-scan sonar image (선택적 sparse coding 기반 측면주사 소나 영상의 고속 초해상도 복원 알고리즘)

  • Park, Jaihyun;Yang, Cheoljong;Ku, Bonwha;Lee, Seungho;Kim, Seongil;Ko, Hanseok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.1
    • /
    • pp.12-20
    • /
    • 2018
  • Efforts have been made to reconstruct low-resolution underwater images to high-resolution ones by using the image SR (Super-Resolution) method, all to improve efficiency when acquiring side-scan sonar images. As side-scan sonar images are similar with the optical images with respect to exploiting 2-dimensional signals, conventional image restoration methods for optical images can be considered as a solution. One of the most typical super-resolution methods for optical image is a sparse coding and there are studies for verifying applicability of sparse coding method for underwater images by analyzing sparsity of underwater images. Sparse coding is a method that obtains recovered signal from input signal by linear combination of dictionary and sparse coefficients. However, it requires huge computational load to accurately estimate sparse coefficients. In this study, a sparse coding based underwater image super-resolution method is applied while a selective reconstruction method for object region is suggested to reduce the processing time. For this method, this paper proposes an edge detection and object and non object region classification method for underwater images and combine it with sparse coding based image super-resolution method. Effectiveness of the proposed method is verified by reducing the processing time for image reconstruction over 32 % while preserving same level of PSNR (Peak Signal-to-Noise Ratio) compared with conventional method.

Detection of Settlement Areas from Object-Oriented Classification using Speckle Divergence of High-Resolution SAR Image (고해상도 SAR 위성영상의 스페클 divergence와 객체기반 영상분류를 이용한 주거지역 추출)

  • Song, Yeong Sun
    • Journal of Cadastre & Land InformatiX
    • /
    • v.47 no.2
    • /
    • pp.79-90
    • /
    • 2017
  • Urban environment represent one of the most dynamic regions on earth. As in other countries, forests, green areas, agricultural lands are rapidly changing into residential or industrial areas in South Korea. Monitoring such rapid changes in land use requires rapid data acquisition, and satellite imagery can be an effective method to this demand. In general, SAR(Synthetic Aperture Radar) satellites acquire images with an active system, so the brightness of the image is determined by the surface roughness. Therefore, the water areas appears dark due to low reflection intensity, In the residential area where the artificial structures are distributed, the brightness value is higher than other areas due to the strong reflection intensity. If we use these characteristics of SAR images, settlement areas can be extracted efficiently. In this study, extraction of settlement areas was performed using TerraSAR-X of German high-resolution X-band SAR satellite and KOMPSAT-5 of South Korea, and object-oriented image classification method using the image segmentation technique is applied for extraction. In addition, to improve the accuracy of image segmentation, the speckle divergence was first calculated to adjust the reflection intensity of settlement areas. In order to evaluate the accuracy of the two satellite images, settlement areas are classified by applying a pixel-based K-means image classification method. As a result, in the case of TerraSAR-X, the accuracy of the object-oriented image classification technique was 88.5%, that of the pixel-based image classification was 75.9%, and that of KOMPSAT-5 was 87.3% and 74.4%, respectively.