• Title/Summary/Keyword: 대표변형률

Search Result 91, Processing Time 0.025 seconds

Evaluation of Nonlinear Deformational Characteristics of Soils from Laboratory and Field Tests (실내시험 및 현장시험을 통한 지반의 비선형 변형특성 평가)

  • 김동수;권기철
    • Geotechnical Engineering
    • /
    • v.13 no.5
    • /
    • pp.89-100
    • /
    • 1997
  • It is very improtant to evaluate the reliable nonlinear deformational characteristics of soils not only in the analysis of geotechnical structures under working stress conditions but also for the soil dynamic problems. Field testings such as crosshole and pressuremeter tests can be used to determine the modulus of soils under in-situ conditions, but it is not possible to determine the modulus over the entire strain amplitude range. Laboratory methods such as resonant column 1 torsional shear test can be used to determine the modulus over the whole strain amplitude range, but it is very difficult to obtain the representative undisturbed samples on the sixte. For the reliable evaluation of nonlinear deformation characteristics of soils on a typical site, small strain modulus obtained from field testy and nomalized modulus reduction curve determined by laboratory bests need to be combined. In this paper, laboratory and Held testy were performed at a sixte which consisted of granite wearthered residual boils to evaluate the nonlinear deformational characteristics of coils such as the effects of strain amplitude, loading frequency, confining pressure and sample disturbance. It has been shorn that when the effects of these factors are properly taken into account, the stiffness values evaluated by various field and labrotary tests are comparable to each other fairly well. Finally, the procedure to evaluate the nonlinear deformstional characteristics of the sixte was proposed.

  • PDF

Finite Element Analysis of Lead Rubber Bearing by Using Strain Energy Function of Hyper-Elastic Material (초탄성 재료의 변형률에너지함수를 이용한 LRB받침의 유한요소해석)

  • Cho, Sung Gook;Park, Woong Ki;Yun, Sung Min
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.3
    • /
    • pp.361-374
    • /
    • 2016
  • The material property of the rubber has been studied in order to improve the reliability of the finite element model of a lead rubber bearing (LRB) which is a typical base isolator. Rubber exhibits elastic behaviour even within the large strain range, unlike the general structural material, and has a hyper-elastic characteristics that shows non-linear relationship between load and deformation. This study represents the mechanical characteristics of the rubber by strain energy function in order to develop a finite element (FE) model of LRB. For the study, several strain energy functions were selected and mechanical properties of the rubber were estimated with the energy functions. A finite element model of LRB has been developed by using material properties of rubber and lead which were identified by stress tests. This study estimated the horizontal and vertical force-displacement relationship with the FE model. The adequacy of the FE model was validated by comparing the analytical results with the experimental data.

Dynamic Properties of Korean Subgrade Soils Using Resonant Column Test (공진주 시험기를 이용한 국내 노상토의 동적 물성치)

  • Kim, Dong-Su;Jeong, Chung-Gi;Hong, Seong-Yeong
    • Geotechnical Engineering
    • /
    • v.10 no.2
    • /
    • pp.85-96
    • /
    • 1994
  • Resonant column test huts been widely used as a primary laboratory testing technique in investigating dynamic soil properties expressed in therms of shear and Young's moduli and material damping. In thin Paper, dynamic Properties of typical Korean subgrade boils are investigated at shearing strains between 10-4% and 10-1% using Stokoe-type resonant column teat. The elastic threshold strains(yte) above which shear modulus and damping ratio are affected by strain amplitude, are defined at strain amplitude of about 10-3%. Below yte", small-strain shear modulus (Gmn) increases with confining pressure (Qc) as proportional to (Qe)0.61, and small-strain damping ratio(Dmin) ranges between 1% and 5.7%. Above yte, normalized shear modulus reduction curve(G/Gma. versus log strain) can be quite well expressed with Ramberg Osgood stress -strain equation and match well the curve suggested for sand by Seed and Idriss.riss.

  • PDF

A study on critical strain based damage-controlled test for the evaluation of rock tunnel stability (암반터널 안정성 평가를 위한 손상제어실험 기반의 한계변형률에 관한 연구)

  • Lee, Kang-Hyun;Kim, Do-Hoon;Park, Jeong-Jun;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.6
    • /
    • pp.501-517
    • /
    • 2011
  • In general, the tunnel stability during excavation is assessed by comparing measured displacements at roof and sidewall to control criteria. The control criteria were established based on the past experience that considered ground conditions, size of the tunnel cross section, construction method, supports, etc. Therefore, a number of researches on the control criteria using the critical strain have been conducted. However, the critical strain obtained from uniaxial compression tests have drawbacks of not taking damage in rock mass due to increase of stress level and longitudinal arching into account. In this paper, damage-controlled tests simulating stress level and longitudinal arching during tunnel excavation were carried out in addition to uniaxial compression tests to investigate the critical strain characteristics of granite and gneiss that are most abundant rock types in Korean peninsula. Then, the critical strains obtained from damage-controlled tests were compared to those from uniaxial compression tests; the former showed less values than the latter. These results show that the critical strain obtained from uniaxial compression tests has to be reduced a little bit to take stress history during tunnel excavation into account. Moreover, the damage critical strain was proposed to be used for assessment of the brittle failure that usually occurs in deep tunnels.

Evaluation of Field Nonlinear Modulus of Subgrnde Soils Using Repetitive Static Plate Bearing Load Test (반복식 평판재하시험을 이용한 노상토의 현장 변형계수 평가)

  • Kim Dong-Soo;Seo Won-Seok;Kweon Gi-Chul
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.6
    • /
    • pp.67-79
    • /
    • 2005
  • The field plate load test has a good potential for determining modulus since it measures both plate pressure and settlement. Conventionally the modulus has been assumed to be a constant secant value defined from the settlement of the plate at a given load intensity. A constant modulus (modulus of subgrade reaction, k), however, may not be a representative value of subgrade soil under working load. Field strain(o. stress)-dependent modulus characteristics of subgrade soils, at relatively low to intermediate strains, are important in the pavement design. In this study, the field strain dependent moduli of subgrade soils were obtained using cyclic plate load test. Testing procedure and data reduction method are proposed. The field crosshole and laboratory resonant column tests were also performed to determine field nonlinear modulus at $0.001\%\;to\;0.1\%$ strains, and the modulus values and nonlinear trends are compared to those obtained by cyclic plate load tests. Both modulus values match relatively well when the different state of stress between two tests was considered, and the applicability of field cyclic plate load test for determining nonlinear modulus values of subgrade soils is verified.

Permeability Characteristics of Sedimented Clayey Soils (점토퇴적지반의 투수특성 연구)

  • Kim Dae-Kyu
    • Proceedings of the KAIS Fall Conference
    • /
    • 2004.11a
    • /
    • pp.313-315
    • /
    • 2004
  • 본 연구에서는 점토퇴적지반의 투수특성을 실험적으로 연구하기 위하여 표준압밀시험, 일정변형률압밀시험 등을 수행하였다. 시험결과를 분석하여 비등방성, 투수변화지수, 간극비와 의 관계 및 투수계수에 영향을 미치는 다양한 영향요소에 관하여 고찰하였으며, 대표투수계수를 제안하였다.

  • PDF

Improvement of Dao's Reverse Analysis and Determination of Representative Strain for Extracting Elastic-Plastic Properties of Materials in Analysis of Nanoindentation (나노압입공정 해석에서 재료의 탄소성 특성 도출을 위한 대표변형률의 결정과 Dao의 Reverse 해석의 향상)

  • Lee, Jung-Min;Lee, Chan-Joo;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.2
    • /
    • pp.105-118
    • /
    • 2008
  • The newly developed analysis method for nanoindentation load-displacement curves are focused on not only obtaining elastic modulus and hardness values but also other mechanical properties, such as yield strength and strain hardening properties. Dao et al. developed a forward and reverse algorithm to extract the elasto-plastic properties of materials from the load-displacement curves obtained in nanoindentation test. These algorithms were only applicable for engineering metals (Poisson#s ratio 0.3) using the equivalent conical indenter of the Berkovich. However, the applicable metals are substantially limited because range of used in the finite element analysis is narrow. This study is designed to expand range of the applicable metals in the reverse algorithms established by Dao et al. and to improve the accuracy of that for extracting the elasto-plastic properties of materials. In this study, a representative strain was assumed to vary according to specific range of $E^*/{\sigma}_r$ and was defined as function of $E^*/{\sigma}_r$. Also, an initial unloading slope in reverse algorithms improved in this study was not considered as independent parameters of the load-displacement curves. The mechanical properties of materials for finite element analysis were modeled with the elastic modulus, E, the yield strength, ${\sigma}_y$, and the strain hardening exponents, n. We showed that the representative strain (0.033) suggested by Dao et al. was no longer applicable above the $E^*/{\sigma}_r$ of 400 and depended on values of $E^*/{\sigma}_r$. From these results, we constructed the dimensionless functions, in where the initial unloading slope was not included, for engineering metals up to $E^*/{\sigma}_r$ of 1500. These functions allow us to determine the mechanical properties with greater accuracy than Dao#s study.

Development of Asphalt Concrete Rutting Model by Triaxial Compression Test (삼축압축시험을 이용한 아스팔트 혼합물의 소성변형 파손모형 개발)

  • Lee, Kwan-Ho;Hyun, Seong-Cheol
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.1
    • /
    • pp.57-64
    • /
    • 2009
  • This study intends to evaluate of the characteristics of pavement deformation and develop the model for prediction model in the asphalt layer using a regression analysis. In test, there are two different asphalt binders and 5 different aggregate types. The air voids of hot mix asphalt are 6% and 10% for target value. Repeated triaxial compression test with 3 different confining pressures was used for test at 3 different test temperatures. It is going to verify the main parameters for permanent deformation of HMA and to develop the distress model. This paper is to figure out the factor affecting the pavement deformation, and then to develop model the pavement deformation for asphalt mixture. Also, the reliability of prediction model has been studied. The permanent deformation prediction model for asphalt mixtures with temperature, loading time, and air voids has been developed and the proposed permanent deformation prediction model has been validated by using the multiple regression approach which is called Statistical Package for the Social Sciences(SPSS).

빔 요소를 이용한 리엔트런트 오그제틱 구조에 대한 전산구조설계

  • Sin, Jae-Gwang
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.197-200
    • /
    • 2015
  • 푸아송비(poisson's ratio)는 종방향 변형률에 대한 횡방향 변형률의 비로, 우리 주위 대부분의 재료들은 양의 푸아송비를 지닌다. 그러나 재료가 특정한 격자구조를 이루도록 설계할 경우 구성물질이 양의 푸아송비를 가지더라도 거시적으로는 음의 푸아송비를 구현할 수 있으며, 이러한 극한물성물질(metamaterial)을 오그제틱 물질(auxetic material)이라고 부른다. 이전까지 오그제틱 물질을 구현하기 위한 많은 메커니즘들이 개발되고 역학적, 수치적으로 해석되어 왔다. 이 논문에서는 가장 대표적인 오그제틱 구조인 리엔트런트(re-entrant) 오그제틱 구조를 빔 구조물로 모델링하여 유한요소해석을 수행하고 주요 설계 변수인 리엔트런트 각에 따라서 푸아송비와 유효 탄성계수가 어떻게 변화하는지 확인하였다.

  • PDF