• Title/Summary/Keyword: 대체 연료유

Search Result 69, Processing Time 0.026 seconds

New Technology Development for Production of Alternative Fuel Oil from Thermal Degradation of Plastic Waste (폐플라스틱의 열분해에 의한 대체 오일 생산의 신기술 개발)

  • Lee Kyong-Hwan;Roh Nam-Sun;Shin Dae-Hyun
    • Resources Recycling
    • /
    • v.15 no.1 s.69
    • /
    • pp.37-45
    • /
    • 2006
  • For treating a huge amount of plastic waste with the environment problem, pyrolysis of plastic waste into alternative fuel oil is one or important issue in recycling methods. This study was introduced over the trend or generation of plastic waste, in Korea pyrolysis technology in domestic and foreign countries, basic technology in pyrolysis process and new technology of pyrolysis developed in KIER (Korea Institute of Energy research). The characteristics of process developed in KIER are the continuous loading treatment or mixed plastic waste with an automatic control system, the minimization of wax production by circulation pyrolysis system in non-catalytic reactor, the reuse of gas produced and the oil recovery from sludge generated in pyrolysis plant, which have greatly the advantage economically and environmetally. The experiment result data in 300 ton/yr pilot plant showed about $81\;wt\%$ liquid yield for 3 days continuous reaction time, and also the boiling point distribution of light oil (LO) and heavy oil (HO) produced in distillation tower was a little higher than that of commercial gasoline and diesel, respectively.

New Technology Development for Production of Alternative Fuel Oil from Thermal Degradation of Plastic Waste (폐플라스틱의 열분해에 의한 대체 오일 생산의 신기술 개발)

  • Lee, Kyong-Hwan;Roh, Nam-Sun;Shin, Dae-Hyun
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2005.10a
    • /
    • pp.34-46
    • /
    • 2005
  • For treating a huge amount of plastic waste with the environment problem, pyrolysis of plastic waste into alternative fuel oil is one of important issue in recycling methods. This study was introduced over the trend of generation of plastic waste, pyrolysis technology in domestic and foreign countries, basic technology in pyrolysis process and new technology of pyrolysis developed in KIER (Korea Institute of Energy Research). The characteristics of process developed in KIER are the continuous loading treatment of mixed plastic waste with an automatic control system, the minimization of wax production by circulation pyrolysis system in non-catalytic reactor, the reuse of gas produced and the oil recovery from sludge generated in pyrolysis plant, which have greatly the advantage economically and environmetally. The experiment result data in 300 ton/yr pilot plant showed about 81 wt% liquid yield for 3 days continuous reaction time, and also the boiling point distribution of light oil (LO) and heavy oil (HO) produced in distillation tower was a little higher than that of commercial gasoline and diesel, respectively.

  • PDF

The Combustion Characteristics of Biodiesel Fuel as an Alternative Fuel for D.I. Diesel Engine (직접분사식 디젤기관에서 바이오디젤 연료의 연소특성)

  • Jang, S.H.;Suh, J.J.
    • Journal of Power System Engineering
    • /
    • v.12 no.2
    • /
    • pp.12-17
    • /
    • 2008
  • Biodiesel fuel(BDF) which is easily produced from vegetable oils such as soybean oil and rice bran oil can be effectively used as an alternative fuel in diesel engine. But biodiesel fuel can affect the performance and emissions in diesel engine because it has different chemical and physical properties from diesel fuel. To investigate the combustion characteristics of biodiesel fuel as an alternative fuel for D.I. diesel engine, the experiments were carried out at the three-cylinder, four stroke D.I. diesel engine with T/C. Experimental parameters adopted a conventional diesel fuel and a blend of biodiesel fuel derived from soybean. As a result of experiments in a test engine, BSFC with blend of BDF resulted in higher than with diesel fuel. The ignition delay decreased with blend of BDF than with diesel fuel.

  • PDF

Combustion Characteristics of Biodiesel Fuel as an Alternative Fuel for a D.I. Diesel Engine(2) (직접분사식 디젤기관에서 바이오디젤 연료의 연소특성(2))

  • Jang, S.H.
    • Journal of Power System Engineering
    • /
    • v.13 no.6
    • /
    • pp.51-56
    • /
    • 2009
  • Recently, lots of researchers have been attracted to develop various alternative fuels in diesel engine. The use of biodiesel fuel(BDF) is an effective way of substituting diesel fuel in the long run. But biodiesel fuel can affect the performance and emissions in diesel engine because it has different chemical and physical properties from diesel fuel. In this study, to investigate the combustion characteristics of biodiesel fuel as an alternative fuel for D.I. diesel engine, experiments were carried out at the three-cylinder, four stroke D.I. diesel engine with T/C. As a result, shorter ignition delays were observed for the biodiesel blend cases relative to the diesel oil. The pick value of premixed combustion for the rate of heat release is increased with decreasing C.F.W. temperature.

  • PDF

Technology Development of Syngas Production and Liquid Fuel Conversion of Low Grade Fuel by Gasification (저급 연료원의 가스화를 통한 합성가스 제조 및 액체연료 전환 기술 개발)

  • Chung, Seokwoo;Lee, Doyeon;Hwang, Sangyeon;Park, Junsung;Byun, Yongsu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.116.1-116.1
    • /
    • 2010
  • 저급 연료원인 오일샌드는 아스팔트와 같은 중질유를 10% 이상 함유한 모래 또는 사암으로서, 겉으로는 시커먼 흙이나 모래처럼 보이나 내부에는 bitumen, 모래(점토) 및 물 등이 광물질 70~80%, bitumen 10~18%, 물 3~5% 정도의 비율로 혼합되어 있는데, 가열 또는 용매 추출 방식으로 오일샌드에 포함되어 있는 bitumen을 분리하여 정제하면 원유를 생산할 수 있으므로 고유가 시대의 대체에너지원으로 세계적인 석유회사들이 개발을 진행하고 있다. 따라서, 본 연구에서는 이러한 저급 연료원인 오일샌드 bitumen의 활용기술 개발을 위하여 기초특성 분석 결과 bitumen과 가장 유사한 특성을 가지는 것으로 파악된 중질잔사유를 대상으로 가스화를 통한 액체연료 전환을 위해 고점도 시료공급장치, 가스화기, 집진장치, 탈황장치, 수성가스 전환장치, 합성가스 압축장치, DME 전환장치 등으로 구성되는 시스템을 구축한 후 시험을 진행하였다.

  • PDF

Axial Thrust Measurement of Fuel Pump for 75-ton Class Rocket Engine (75톤급 로켓엔진용 연료펌프의 축추력 측정)

  • Kim, Dae-Jin;Hong, Soon-Sam;Choi, Chang-Ho;Kim, Jin-Han
    • Aerospace Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.8-13
    • /
    • 2010
  • An effective control of the axial thrust of a turbopump is one of the critical issues for obtaining its operational stability. Axial thrusts of the fuel pump for the 75-ton class rocket engine under development were measured with water as a test propellant at a room temperature. According to the test results, the axial thrust of the fuel pump seemed to satisfy the axial force condition of its bearing. Also, the thrust was increased as a whole when the flowrate of the pump was decreased. Furthermore it was found that the thrust and the leakage flowate were modified when the gaps between the floating ring seals and the impeller were changed.

Substitution Effect of Fossil Fuel using Biomass produced by Forest Treatment (산림 사업지 바이오매스를 이용한 화석연료 대체효과)

  • Son, Yeong Mo;Lee, Kyeong Hak;Seo, Jeong Ho;Kwon, Soon Duk
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.6
    • /
    • pp.639-643
    • /
    • 2007
  • The use of forest biomass resources produced by forest tending and residual forest biomass that was not gathered on commercial thinning or cutting area was estimated to be come into the spotlight as bioenergy sources in these days of new high oil price. With considering these problems, This study was investigated about possibility with biomass calculation and convertibility to fossil fuel in these area. Total forest tending area in the year 2005 was 294, 115 ha and the yield gathered from these area was $143,747m^3$. It is equivalent to biomass of 115,000 ton and caloric value of 533,199Gcal. However, the potential and additional yield that is residual in forest stands was 2,483,000 ton. It is equivalent to 11,133 billion won of oil which is 20 times of the actual yield produced by forest tending. Therefore, these amount of biomass has a substitution effect of the fossil fuel. Moreover, the residual biomass that is not gathered at commercial thinning and cutting area was 475,000 ton. It is equivalent to 2,206,235 Gcal of heating value and about 2,211 billion won of oil. This potential amount could be a new energy source to be a substitution effect of fossil fuel. It is time to be interested in the forest biomass as a renewable and environment-friendly resource and its substitution effect of fossil fuel.

Thermochemical Conversion of Oil sand Bitumen in Delayed Coking Reactor (코킹 공정(工程)을 이용한 오일샌드 역청(瀝靑)의 열화학(熱化學)적 전환(轉換))

  • Lee, See-Hoon;Yoon, Sang-Jun;Lee, Jae-Goo;Kim, Jae-Ho
    • Resources Recycling
    • /
    • v.17 no.3
    • /
    • pp.35-41
    • /
    • 2008
  • The study of coking technology to upgrade oil sand bitumen which is considered as alternative fuel was performed by using thermogravity analyzer and delayed coking reactor(600ml). To analyzed and compared coking characteristics of oil sand bitumen, the reactivities of oil sand bitumen were measured in the TGA. At the temperature conditions of $400{\sim}550^{\circ}C$ and the temperature rising velocity of $50^{\circ}C/min$. the termination time of coking reaction and conversion efficiencies increased with an increase of bed temperature. However the increase rate decreased over $450^{\circ}C$. So the coking reaction with oil sand bitumen might be over $450^{\circ}C$. Also the termination time decreased with increasing the temperature rising velocity. But the content of coke increased with increasing temperature rising velocity. At the experiments in the delayed coker, the temperature condition at maximum oil yield was $475^{\circ}C$ and the fuel properties of oil from coking reaction was almost equal with conventional diesel. It was verified that the coking process might be useful process to upgrade the oil sand bitumem by using API and SIMDAS.

Development of Solid Fuel by Self-Desulfurization Characteristics in Combustion (연소시 자체 탈황 특성을 이용한 고체연료 개발)

  • 서성규;황원준;이원준;김승호
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2000.11a
    • /
    • pp.405-406
    • /
    • 2000
  • 최근의 유가 상승으로 석유파동이 우려되며, 비산유국인 우리나라의 경우 석유를 대체할 에너지 개발의 필요성이 절실히 요구되고 있다. 한편 국내에서는 석탄의 지역적 편재성이 적고 풍부한 매장량을 가지고 있으면서도 이산화황 등의 대기오염문제를 해결하지 못해 사용량이 해마다 줄어들고 있다. 따라서 잉여탄의 관리 및 처분 문제가 대두되고 있으며, 잉여탄의 소모처 개발이 요구되고 있다. (중략)

  • PDF

유도 결합 플라즈마 스퍼터 승화법을 이용한 Cr 박막 증착 및 특성 분석

  • Choe, Ji-Seong;Ju, Jeong-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.243-243
    • /
    • 2012
  • 화석연료를 대체할 새로운 청정 에너지원의 요구가 높아지고 있는 현 시점에서 고효율, 무공해, 무소음 등의 장점으로 인해 친환경적 에너지원으로 연료전지의 수요가 증가하고 있다. 연료전지 분리판으로 고밀도 흑연을 종래에 가공하여 제작하였는데, 가공이 어렵고, 비용이 크게 들며, 대량생산이 어렵다는 등의 문제로 스테인리스강을 위주로 한 금속 분리판 개발이 이루어지고 있다. 본 연구에서는, 낮은 가격, 고속 증착, 우수한 가공성, 높은 기계적 강도 및 전기전도도, 화학적 안정성 및 내식성을 충족시키기 위하여 스테인리스 강박(0.1 mm이하)에 보호막으로 CrN을 선택하였다. 저가격화를 위하여 새로운 증착원인 스퍼터-승화형 소스의 가능성을 유도 결합 플라즈마에 Cr 봉을 직류 바이어스 함으로써 시도하였다. 10 mTorr의 Ar 유도 결합 플라즈마를 2.4 MHz, 400 W로 유지하면서 직류 바이어스 전력을 120 W (615 V, 0.19 A) 인가하였을 때 10분 동안의 증발양이 0.35 gr으로 측정이 되어 그 가능성을 확인할 수 있었다. 또한 OES(Optical emission spectrometer)를 이용하여 RPS로 방전시킨 고밀도 ICP를 측정한 결과 842.4 nm, 811.4 nm, 772.3 nm 등의 파장에서 높은 intensity를 갖는 peak을 찾을 수 있었고, 이 peak 들은 Ar 중성의 peak임을 확인할 수 있었다. ICP+DC bias로 Cr rod를 가열하는 공정에서의 plasma를 OES로 측정한 결과 Ar 중성의 peak은 감소하고, 520.5 nm, 425.5 nm, 357.7 nm 등의 파장에서 높은 intensity를 갖는 peak을 찾을 수 있었으며, 이 peak들은 Cr 중성의 peak임을 확인할 수 있었다. OES 측정 data를 토대로 공정 중의 rod type Cr target의 교체 주기를 예측할 수 있고 공정 중 실시간 감시가 가능할 것으로 기대된다.

  • PDF