• Title/Summary/Keyword: 대조차 조간대

Search Result 506, Processing Time 0.023 seconds

Seasonal Sedimentary Characteristics and Depositional Environments after the Construction of seawall on the Iwon Macrotidal Flat (방조제 건설 후 이원 대조차 조간대의 계절별 퇴적학적 특성 및 퇴적환경)

  • Kum, Byung-Cheol;Park, Eun-Young;Lee, Hi-Il;Oh, Jae-Kyung;Shin, Dong-Hyeok
    • Journal of the Korean earth science society
    • /
    • v.25 no.7
    • /
    • pp.615-628
    • /
    • 2004
  • In order to elucidate seasonal sedimentary characteristics and depositional environment after construction of seawall on macrotidal flat, a seasonal observations of surface sediments (total 450) and sedimentation rates on 4 transects have been investigated for 2 years. The eastern area of Iwon tidal flat, has been changed from semi-closed coast to open coast by construction of seawall, shows general seasonal changes similar to characteristics of open coast type, which represented both fining and bad sorted distribution due to deposition of fine sediments under low energy condition in the summer, and relatively coarser and better sorted distribution because of erosion of fine sediments in the winter. In considering angles of transects, distribution patterns of surface sediments, the northern and southern parts of eastern tidal flat are dominantly influenced by wave and tidal effects, respectively. As time goes by, the eastern tidal flat shows coarsening-trend of surface sediments caused by direct effect of tidal current, were and typhoon. Meanwhile the western area of seawall, which has been re-formed by construction seawall, is sheltered from northwesterly seasonal wind. The seasonal change pattern of western area of seawall is slightly different from that of eastern tidal flat. Mean grain size and sorting of surface sediments during spring is finer and worse than those during summer. This seasonal change pattern maybe influenced by topographic effects caused from the construction of seawall. In consideration of all result, the transport of fine sediments in the study area, which is supplied to limited sediments, shows clockwise circulation pattern that fine sediments are transported from the eastern tidal flat to the western area of seawall because of blocking of seawall in the winter and are transported reversed direction the summer. As a result, many changes have been observed in the study area after construction of seawall; however, this change is still in progress and is expected to need continuous monitoring.

Characteristics of Landsat ETM+ Image for Gomso Bay Tidal Flat Sediments (곰소만 조간대 퇴적물의 Landsat ETM+ 자료 특성)

  • 류주형;최종국;나영호;원중선
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.2
    • /
    • pp.117-133
    • /
    • 2003
  • A field survey and Landsat ETM+ image acquisition carried out simultaneously. Using these data, we attempted to establish relationships between tidal flat environmental factors and reflectance observed by ETM+, and to set up a new critical grain size useful for optical remote sensing. Although the grain size of 4 $\Phi$ has been conventionally used as a critical size by sedimentologists, the correlation with optical reflectance was very low. Instead, the grain size of 2 $\Phi$ showed a relatively high correlation coefficient, 0.699, with ETM+ band 4, except near tidal channels in upper tidal flat. We concluded that the grain size of 2 $\Phi$ would be better to use for a critical grain size in Gomso Bay. The grain size also correlated well with moisture content having a correlation coefficient of -0.811 when the 2 $\Phi$ criterion was used. The results of factor analysis showed moisture content was more important parameter than topographic relief, and they were different from German tidal flats in which topographic relief was the prior factor This can be explained by finer grain composition of the Gomso bay tidal flat. In short, moisture content and topography as well as grain size should be considered in tidal flat remote sensing.

Effects of Tidal Flat Enlargement Induced by Tidal Amplification (조석확폭에 수반되는 조간대 영역 확대의 영향성)

  • Kang Ju Whan;Moon Seung Rok;Park Seon Jung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.17 no.1
    • /
    • pp.47-54
    • /
    • 2005
  • A method has been developed, which can be handled easily and economically for inputting depth data of complex bathymetry and enourmous tidal flats such as Mokpo coastal zone. The method is applied to Chungkye Bay, and some hydrodynamic features related with tidal flat are analyzed. Tidal amplification by construction of the sea-dike and sea-walls had been detected not only near Mokpo Harbor but also at Chungkye Bay which is connected with Mokpo Harbor by a narrow channel. This brings about the increase of tidal flat area, which makes the ebb dominance at Chungkye Bay more seriously. This pronounced ebb dominance with the increase of tidal discharge at the channel between Chungkye Bay and Mokpo Harbor, which results in deepened ebb dominance near Mokpo Harbor as well.

A Finite Element Hydrodynamic Model far Moving Boundary Problems (이동경계를 고려한 유한요소 해수류동모형)

  • 정태성;김창식
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.4 no.3
    • /
    • pp.146-155
    • /
    • 1992
  • It has been conventional to treat the land boundary as a fixed one in numerical modeling of tidal flows, particularly in the finite element scheme. However conventional models using the fixed land boundary result in unrealistic tidal flows in inter-tidal zones which exist over wide coastal area in Korea. In this study, a 2-dimensional hydrodynamic model, using finite element method for moving boundary problems was developed. The performance of the model was tested in a rectangular channel with an open boundary at one end and a moving boundary at the other end. The model was applied to calculate the tidal currents in Maro Hae, located in the southwestern part of Korea where wide tidal flats develop. The behavior of tidal currents in the Udolmok and near the tidal flats in the study area was satisfactory when compared with the observed data. Variation of tidal currents due to the construction of Kochunam sea-dyke which barrages large area of tidal flat was presented. The results of this study confirm the efficiency of moving boundary treatment in coastal numerical models.

  • PDF

Construction of High-Resolution Topographical Map of Macro-tidal Malipo beach through Integration of Terrestrial LiDAR Measurement and MBES Survey at inter-tidal zone (대조차 만리포 해안의 지상 LiDAR와 MBES를 이용한 정밀 지형/수심 측량 및 조간대 접합을 통한 정밀 지형도 작성)

  • Shim, Jae-Seol;Kim, Jin-Ah;Kim, Seon-Jeong;Kim, Sang-Ik
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.1
    • /
    • pp.58-66
    • /
    • 2010
  • In this paper, we have constructed high-resolution topographical map of macro-tidal Malipo beach through integration of terrestrial LiDAR measurement and MBES survey data at inter-tidal zone. To acquire the enough information of inter-tidal zone, we have done terrestrial LiDAR measurement mounted on the roof of vehicle with DGPS through go-stop-scan method at the ebb tide and MBES depth surveying with tide gauge and eye staff measurement for tide correction and MSL calculation at the high tide all together. To integrate two kinds of data, we have unified the vertical coordination standard to Incheon MSL. The mean error of overlapped inter-tidal zone is about 2~6 cm. To verify the accuracy of terrestrial LiDAR, RTK-DGPS measurement have done simultaneously and the difference of Z value RMSE is about 4~7 cm. The resolution of Malipo topographical map is 50 cm and it has constructed to DEM (Digital Elevation Model) based on GIS. Now it has used as an input topography information for the storm-surge inundation prediction models. Also it will be possible to use monitoring of beach process through the long-term periodic measurement and GIS-based 3D spatial analysis calculating the erosion and deposition considering with the artificial beach transition and coastal environmental parameters.

Role of Sand Shoal in the Intertidal Flat Sedimentation, Gomso Bay, Southwestern Korea (서해 곰소만 조간대 퇴적작용에서 모래톱의 역할)

  • Lee, In-Tae;Chun, Seung Soo
    • Journal of the Korean earth science society
    • /
    • v.22 no.2
    • /
    • pp.120-129
    • /
    • 2001
  • A sand shoal (1300 m long and 400 m wide) with an orientation of north-south is formed on the lower tidal flat of Gomso Bay, southwestern coast of Korea. Surface bedforms, sedimentary structures, sedimentation rate, grain size distribution and can-corer sediments have been measured and analysed along the sand shoal proper zone B and its offshore zone A and onshore zone C during the period of 14 months. These three zones can be differentiated based on sedimentological characteristics: A zone - fine sand (3${\varphi}$ mean), linguoid-type ripples, 70 mm/month in sedimentation rate and no bioturbation, B zone - medium sand (2.5${\varphi}$ mean), dunes (4${\sim}$5 m in wavelength), 30 mm/month in sedimentation rate and no bioturbation, and C zone - coarse silt (5${\varphi}$ mean), sinuous-type ripples, 10 mm/month in sedimentation rate and well-developed bioturbation. These characteristics indicate that the zone C represents a relatively low-energy regime environment whereas the zone A corresponds to a relatively high-energy environment. The zone B would play an important role for a barrier to dissipate the approaching wave energy, resulting in maintaining of low-energy conditions in the inner part of Gomso-Bay intertidal flat behind.

  • PDF

Intertidal DEM Generation Using Waterline Extracted from Remotely Sensed Data (원격탐사 자료로부터 해안선 추출에 의한 조간대 DEM 생성)

  • 류주형;조원진;원중선;이인태;전승수
    • Korean Journal of Remote Sensing
    • /
    • v.16 no.3
    • /
    • pp.221-233
    • /
    • 2000
  • An intertidal topography is continuously changed due to morphodynamics processes. Detection and measurement of topographic change for a tidal flat is important to make an integrated coastal area management plan as well as to carry out sedimentologic study. The objective of this study is to generate intertidal DEM using leveling data and waterlines extracted from optical and microwave remotely sensed data in a relatively short period. Waterline is defined as the border line between exposed tidal flat and water body. The contour of the terrain height in tidal flat is equivalent to the waterline. One can utilize satellite images to generate intertidal DEM over large areas. Extraction of the waterline in a SAR image is a difficult task to perform partly because of the presence of speckle and partly because of similarity between the signal returned from the sea surface and that from the exposed tidal flat surface or land. Waterlines in SAR intensity and coherence map can effectively be extracted with MSP-RoA edge detector. From multiple images obtained over a range of tide elevation, it is possible to build up a set of heighted waterline within intertidal zone, and then a gridded DEM can be interpolated. We have tested the proposed method over the Gomso Bay, and succeeded in generating intertidal DEM with relatively high accuracy.

Bottom Topography Observation in the Intertidal Zone Using a Camera Monitoring System (카메라 관측 시스템을 이용한 조간대 3차원 지형 관측)

  • Kim Tae-Rim
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.18 no.1
    • /
    • pp.63-68
    • /
    • 2006
  • Time series of waterline changes during a flood/ebb cycle can be utilized for supplementary data for measuring bottom topography. The waterlines extracted from consecutive images are substituted for depth contours using water level data. The distances between contours are quantified through a rectification image process. This technique is applied to the Keunpoolan beach in the Daeijak Island near Incheon. A camera monitoring technique supported by natural water level changes produces bottom topography with high precision. It is also less time consuming and more economical. The technique also can be utilized effectively to the physical modeling f3r measuring bottom changes in the three dimensional basin.

Analysis of Relationship between Kanghwa Tidal Flat Channel and Sedimentary Facies Using EOC. (EOC를 이용한 강화도 갯벌 조류로와 퇴적상과의 관계 연구)

  • 유주형;우한준;유홍룡;안유환
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2004.03a
    • /
    • pp.475-479
    • /
    • 2004
  • 위성에서 감지되는 조간대 원격 반사도는 함수율, 퇴적상, 지형과 생물체 등의 영향에 의해 결정된다. 따라서 다른 환경요인을 제거하지 않고 위성자료 값을 분류하여 퇴적상과 비교한다면 좋은 결과를 얻을 수 없다. 하지만 퇴적상과 다른 환경요인은 관계가 복잡하고 미묘하게 얽혀있기 때문에 위성 자료 값에서 정량적으로 분리하거나 고려하는 것은 매우 어렵다. 특히 mud flat의 조류로나 세곡 부분은 배수구배의 발달로 인해 표층이 빠르게 마르게 되어 매우 높은 광학 반사도를 보이고 이는 sand가 우세한 지역의 높은 광학반사도와의 구별을 어렵게 만든다. 따라서 본 연구에서는 위성자료의 원격반사도 값만으로 조간대의 표층 퇴적상을 분류할 경우 에러가 발생할 수 있는 이러한 문제를 해결하기 위하여 조간대 texture와 표층 퇴적상과의 관계를 파악하고자 한다. 6.6 m 해상도를 갖는 EOC 자료를 이용하여 조류로의 형태와 밀도를 알아내고, 현장에서 샘플 된 입도 자료를 분석하여 비교함으로서 상관관계를 알아보고자 한다. mud flat의 경우, 대부분 복잡한 texture 구조를 갖고 밀도가 매우 높게 나타났으며 mixed flat 지역에서는 직선 구조를 갖는 큰 조류로가 발달하며 일부지역에서는 표면수가 잔존함에 의해 조간대에서 가장 어둡게 나타났다. 반면 sand shoal 이나 chenier 등과 같이 sand의 함량이 매우 높은 곳에서는 지형이 높아 함수율이 매우 낮아 높은 광학 반사도를 보임을 알 수 있었다.

  • PDF