• Title/Summary/Keyword: 대조도대잡음비

Search Result 33, Processing Time 0.077 seconds

The usefulness of the contrast agent high in gadolinium for the contrast-enhanced magnetic resonance hip arthrography (고관절의 자기공명관절조영검사 시 가돌리늄 함유량이 높은 조영제의 유용성)

  • Choi, Kwan-Woo;Kim, Yoon-Shin;Son, Soon-Yong;Lee, Ho-Beom;Na, Sa-Ra;Min, Jung-Whan;Yoo, Beong-Gyu;Lee, Jong-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.5682-5688
    • /
    • 2013
  • The purpose of this study is to maximize diagnositc usefulness with increasing signal to noise ratio(SNR) and contrast to noise ratio(CNR) by using a 1mmol/mL gadolinium contrast agent. From January 2012 to June 2013 fourty-seven patients were underwent the MRI scanning to investigate the contrast difference in gadolinium content. Twenty of the patients were injencted the commercial contrast agent containing 0.5mmol/mL gadolinium and the rest of them were injected the new contrast agent containing 1mmol/mL gadolinium called gadobutrol. We measured and evaluated each SNR and CNR of the hip joint space, iliopsoas muscle and femoral head. As a result, using the 1mmol/mL gadolinium contrast agent had the higher SNR results than using the 0.5mmol/mL agent(27% in the hip joint, 30.01% in the femoral head). Also CNR using the 1mmol/mL gadolinium agent was proved to be higher than that of using 0.5mmol/mL agent(28.31% in the ilopsoas muscle and 26.74% in the femoral head). Therefore, the contrast agent containing more gadolinium like 1mmol/mL used in this study is more effective to shorten T1 relaxation time, so it increases the signal intensity and CNR and furthermore maximizes diagnostic value. This study reports the usefulness of the 1mmol/mL contrast agent in the contrast-enhanced magnetic resonance hip arthrography for the first. Therefore, it can be considered to have an meaningful academic value as showing the method for increasing the diagnostic usefulness by using the 1mmol/mL contrast agent.

A Comparative Study of Patient Dose and Image Quality according to the Presence or Absence of Grid During Chest PA Radiography using an Auto Exposure Control System (자동 노출 조절장치를 사용한 흉부 후·전 방향 방사선 검사 시 격자 유·무에 따른 환자 선량과 영상품질 비교 연구)

  • So-min Lee;Han-yong Kim;Dong-hwan Kim;Young-Cheol Joo
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.4
    • /
    • pp.573-579
    • /
    • 2023
  • This study compares dose difference between the presence or absence of grid in Chest PA radiography using auto exposure control and compares image quality among presence, absence or virtual grid, and proposes a new clinically useful grid combination for chest radiography. The human body phantom was placed Chest PA position and the dosimeter was placed at T6. The same irradiation conditions and field size were applied. 30 images were obtained in the state in which grid was applied and in the state in which grid was not applied, and an additional 30 images in which the virtual grid was applied to the image without the grid were obtained. Radiation dose was presented to entrance surface dose. The image quality was analyzed by comparing the signal-to-noise and contrast-to-noise ratio. ESD decreased by 48% when the grid was not used, compared to when the grid was used. SNR and CNR increased by 32% and 30% compared to grid use when grid was not used, respectively. In the case of using the virtual grid, it increased by 18% and 16% respectively, compared to the case of using the grid. As a result of this study, it is believed that when using a virtual grid instead of a grid, the quality of the image can be maintained while reducing the patient dose.

Dose Reduction Method for Chest CT using a Combination of Examination Condition Control and Iterative Reconstruction (검사 조건 제어와 반복 재구성의 조합을 이용한 흉부 CT의 선량 저감화 방안)

  • Sang-Hyun Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.7
    • /
    • pp.1025-1031
    • /
    • 2023
  • We aimed to evaluate the radiation dose and image quality by changing the Scout view voltage in low-dose chest CT (LDCT) and applying scan parameters such as AEC (auto exposure control) and ASIR (adaptive statistical iterative reconstruction) to find the optimal protocol. Scout view voltage was varied at 80, 100, 120, 140 kV and after measuring the dose 5 times using the existing low-dose chest CT protocol, the appropriate kV was selected for the study using the Dose report provided by the equipment. After taking a basic LDCT shot at 120 kV, 30 mAs, ASIR 50% was applied to this condition. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were assessed by measuring Background noise (B/N). For dose comparison, CTDIvol and DLP provided by the equipment were compared and analyzed using the formulas. The results indicated that the protocol of scout 140 + LDCT + ASIR 50 + AEC reduced radiation exposure and improved image quality compared to traditional LDCT, providing an optimal protocol. As demonstrated in the experiment, LDCT screenings for asymptomatic normal individuals are crucial, as they involve concerns over excessive radiation exposure per examination. Therefore, applying appropriate parameters is important, and it is expected to contribute positively to the public health in future LDCT based health screenings.

Evaluation of Dose and Image Quality of Lens according to Baseline during Brain CT Scan (두부 전산화단층촬영 시 기준선에 따른 수정체 선량과 화질 평가)

  • Kim, Kyu-Hyung;Kim, Sang-Hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.5
    • /
    • pp.699-704
    • /
    • 2019
  • It is important to minimize the exposure dose during an examination and obtain good quality images at the same time. This study compared the beam harding effect according to the baseline superior orbito meatal line(SOML), orbito meatal line(OML), inferior orbito metal line(OML) and measured the exposure dose of the lens, especially in brain CT examinations, which generally apply to head diease patients. The beam harding effect assessment of each image along the baseline was performed quantitatively using the Image J program, and the exposure dose of the lens was detected by OSLDs and compared. As a result, As a result, when the SOML was used as the reference line, the dose of the lens was decreased by 85.08% at 80 kV and by 79.7% at 80 kV, compared to when IOML was used as the baseline. If the gantry angle at brain CT was parallel scan to SOML, there were no significant differences in the exposure to the lens and between the OML and IOML. Therefore, this study has shown that it is efficient to have a parallel scan on SOML as a protocol during Brain CT examinations.

A Study of Scattered Radiation Effect on Digital Radiography Imaging System (디지털 방사선영상 시스템에서 산란선이 영상 품질에 미치는 영향)

  • Baek, Cheol-Ha
    • Journal of radiological science and technology
    • /
    • v.40 no.1
    • /
    • pp.71-78
    • /
    • 2017
  • Scattered radiation is inherent phenomenon of x-ray, which occurs to the subject (or patient). Therefore it cannot be avoidable but also interacts as serious noise factor because the only meaningful information on x-ray radiography is primary x-ray photons. The purpose of this study was to quantify scattered radiation for various shooting parameters and to verify the effect of anti-scatter grid. We employed beam stopper method to characterize scatter to primary ratio. To evaluate effect on the projection images calculated contrast to noise ratio of given shooting parameters. From the experiments, we identified the scattered radiation increases in thicker patient and smaller air gap. Moreover, scattered radiation degraded contrast to noise ratio of the projection images. We find out that the anti-scatter grid rejected scattered radiation effectively, however there were not fewer than 100% of scatter to primary ratio in some shooting parameters. The results demonstrate that the scattered radiation was serious problem of medical x-ray system, we confirmed that the scattered radiation was not considerable factor of dig ital radiog raphy.

Quantitative, qualitative Evaluation of Diffusion-Weighted MRI using Optimal b-value(s/mm2) for Female Pelvis (여성골반에 대한 최적의 b-value(s/mm2)를 이용한 확산강조 자기공명영상의 정량적, 성적 평가)

  • Goo, Eun-Hoe
    • Journal of Digital Convergence
    • /
    • v.11 no.1
    • /
    • pp.361-368
    • /
    • 2013
  • The purpose of this study is to know the clinical usefulness of optimal b-values by quantitative, qualitative evaluation of DW-MRI for lesions of benignity and malignity of female pelvis. The b-values used in DWI were 600, 800, 1000, 1200, 1400($s/mm^2$). Mean SNR and CNR of myoma in b-value 800 were the highest result as $84.6{\pm}4.57$(p=0.024) and $50.13{\pm}5.47$(p=0.028), Mean SNR and CNR of cervical cancer were the highest result as $12.0{\pm}2.04$(p=0.047) and $10.6{\pm}1.24$(p=0.001), Mean ADC value in myoma and cervical cancer in b-value 800 were $1.19{\times}10^{-3}mm^2/s$(p=0.008), $0.96{\times}10^{-3}mm^2/s$(p=0.027). As a qualitative analysis, the delineation and conspicuity were the highest result as $4.02{\pm}0.18$(p=0.028), $4.39{\pm}0.25$(p=0.015) on b-value 800. DW-MRI is an important method, and the optimal b values is 800 $s/mm^2$ for differentiation between benign and malignant lesions of female pelvis.

The Value of Three-Dimensional Reconstructions of MRI Imaging using Maximum Intensity Projection Technique (유방 MRI의 최대강도투사 기법에 의한 3차원 재구성 영상의 유용성)

  • Cho, Jae-Hwan;Lee, Hae-Kag;Hong, In-Sik;Kim, Hyun-Joo;Jang, Hyun-Cheol;Park, Cheol-Soo;Park, Tae-Nam
    • Journal of Digital Contents Society
    • /
    • v.12 no.2
    • /
    • pp.157-164
    • /
    • 2011
  • The purpose of this study was to examine the usefulness of 3D reconstruction images in breast MRI by performing a quantitative comparative analysis in patients diagnosed with DCIS. On a 3.0T MR scanner, subtraction images and 3D reconstruction images were obtained from 20 patients histologically diagnosed with ductal carcinoma in situ (DCIS). The findings from the quantitative image analysis are the following: The 3D reconstruction images showed higher SNR at the lesion area, ductal area, and fat area that of the subtraction image. In addition, the CNR were not significantly different in the lesion area itself between the subtraction images and 3D reconstruction images.

Optimization of Tube Voltage according to Patient's Body Type during Limb examination in Digital X-ray Equipment (디지털 엑스선 장비의 사지 검사 시 환자 체형에 따른 관전압 최적화)

  • Kim, Sang-Hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.5
    • /
    • pp.379-385
    • /
    • 2017
  • This study identifies the optimal tube voltages depending on the changes in the patient's body type for limb tests using a digital radiography (DR) system. For the upper-limp test, the dose area product (DAP) was fixed at $5.06dGy{\ast} cm^2$, and for the lower-limb test, the DAP was fixed at $5.04dGy{\ast} cm^2$. Afterwards, the tube voltage was changed to four different stages and the images were taken three times at each stage. The thickness of the limbs was increased by 10 mm to 30 mm to change in the patient's body type. For a quantitative evaluation, Image J was used to calculate the contrast to noise ratio (CNR) and signal to noise ratio (SNR) among the four groups, according to the tube voltage. For statistical testing, the statistically significant differences were analyzed through the Kruskal-Wallis test at a 95% confidence level. For the qualitative analysis of the images, the pre-determined items were evaluated based on a 5-point Likert scale. In both upper-limb and lower-limb tests, the more the tube voltage increased, the more the CNR and SNR of the images decreased. The test on the changes depending on the patient's body shape showed that the more the thickness increased, the more the CNR and SNR decreased. In the qualitative evaluation on the upper limbs, the more the tube voltage increased, the more score increased to 4.6 at the maximum of 55kV and 3.6 at 40kV, respectively. The mean score for the lower limbs was 4.4, regardless of the tube voltage. The more either the upper or lower limbs got thicker, the more the score generally decreased. The score of the upper limps sharply dropped at 40kV, whereas that of the lower limps sharply dropped at 50kV. For patients with a standard thickness, the optimized images can be obtained when taken at 45kV for the upper limbs, and at 50kV for the lower limbs. However, when the thickness of the patient's limbs increases, it is best to set the tube voltage at 50 kV for the upper limbs and at 55 kV for the lower limbs.

Quantitative Assessment using SNR and CNR in Cerebrovascular Diseases : Focusing on FRE-MRA, CTA Imaging Method (뇌혈관 질환에서 신호대 잡음비와 대조도대 잡음비를 이용한 정량적평가 : FRE-MRA, CTA 영상기법중심으로)

  • Goo, Eun-Hoe
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.6
    • /
    • pp.493-500
    • /
    • 2017
  • In this study, data analysis has been conducted by INFINITT program to analyze the effect of signal to noise ratio(SNR) and contrast to noise ratio(CNR) of flow related enhancement(FRE) and computed tomography Angiography(CTA) on cerebrovascular diseases for qualitative evaluations. Based on the cerebrovascular image results achieved from 63 patients (January to April, 2017, at C University Hospital), we have selected 19 patients that performed both FRE-MRA and CTA. From the 19 patients, 2 were excluded due to artifacts from movements in the cerebrovascular image results. For the analysis conditions, we have set the 5 part (anterior cerebral artery, right and left Middle cerebral artery, right and left Posterior cerebral artery) as the interest area to evaluate the SNR and CNR, and the results were validated through Independence t Test. As a result, by averaging the SNR, and CNR values, the corresponding FRE-MRA achieved were: anterior cerebral artery ($1500.73{\pm}12.23/970.43{\pm}14.55$), right middle cerebral artery ($1470.16{\pm}11.46/919.44{\pm}13.29$), left middle cerebral artery ($1457.48{\pm}17.11/903.96{\pm}14.53$), right posterior cerebral artery ($1385.83{\pm}16.52/852.11{\pm}14.58$), left posterior cerebral artery ($1318.52{\pm}13.49/756.21{\pm}10.88$). by averaging the SNR, and CNR values, the corresponding CTA achieved were: anterior cerebral artery ($159.95{\pm}12.23/123.36{\pm}11.78$), right middle cerebral artery ($236.66{\pm}17.52/202.37{\pm}15.20$), left middle cerebral artery ($224.85{\pm}13.45/193.14{\pm}11.88$), right posterior cerebral artery ($183.65{\pm}13.47/151.44{\pm}11.48$), left posterior cerebral artery ($177.7{\pm}16.72/144.71{\pm}11.43$) (p < 0.05). In conclusion, MRA had high SNR and CNR value regardless of the cerebral infarction or cerebral hemorrhage observed in the 5 part of the brain. Although FRE-MRA consumed longer time, it proved to have less side effect of contrast media when compared to the CTA.

A Study on the Dose Reduction Method for Temporal Bone HRCT Scan (관자뼈 HRCT 스캔 시 선량감소 방법에 관한 연구)

  • Joon Yoon;Hyeon-Ju Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.7
    • /
    • pp.1041-1047
    • /
    • 2023
  • Temporal bone CT, which is a high-resolution CT, uses a high tube voltage and a thin section thickness, so the scan dose is higher than that of adjacent areas. Accordingly, we applied changes to the reconstruction algorithm among the test conditions to find an algorithm with excellent sensitivity to lesions while reducing the test dose, and investigated its significance and the possibility of providing basic clinical data. As a result, when the tube voltage was lowered to 100 kVp and applied, the dose was reduced by about 35.6%, and when the definition algorithm was applied to the raw data acquired at 100 kVp, the SNR and CNR were excellent, and a statistically significant difference was shown when compared to other algorithms(p<0.05). And as a result of comparing structural similarity, the SSIM index was analyzed as 0.776, 0.813, and 0.741 for each ROI. Therefore, we believe that applying algorithm changes to temporal bone CT scans can partially reduce the dose generated from CT scans and are very meaningful in terms of basic clinical data.