• Title/Summary/Keyword: 대안적 과학의 본성 관점들

Search Result 3, Processing Time 0.021 seconds

A Study on the Plurality of Nature of Science in Science Education ('과학의 본성' 교육 -그 다원성 고찰-)

  • Cho, Eunjin;Kim, Chan-jong;Choe, Seung-urn
    • Journal of The Korean Association For Science Education
    • /
    • v.38 no.5
    • /
    • pp.721-738
    • /
    • 2018
  • Nature of Science(NOS) has been a well-organized focus of science education and one of the key elements in defining and cultivating scientific literacy for more than a century. In recent years, a specific description of NOS, which is often known as 'the consensus view of NOS', has become very influential and has gained ready acceptance as an arrangement for both curriculum building and research into understanding of NOS by students and teachers in many countries around the world. This study has two purposes; one is to review some debates and criticism on the consensus view of NOS which consists of a list of sentences to describe nature of refined and general science, which have been heated up for the last few years by many prominent science education researchers, and the other is to consider alternative perspectives on NOS for the purpose of a new direction of NOS education. As a result of an investigation into such views as 'Teaching about NOS', 'Critical NOS', 'Critical Thinking-NOS', 'Whole Science', 'Features of Science' and 'Reconceptualized Family Resemblance Approach to NOS', some implications which focus on the generality and plurality of content knowledge of NOS based on current philosophy of science and sociology of scientific knowledge are suggested for the improvement of teaching and learning NOS.

Analysis of Students' Socioscientific Decision-Making from the Nature of Technology Perspectives (과학·기술관련 사회쟁점(SSI)에 대한 학생들의 주요 의사결정 논점의 기술의 본성(NOT)적 해석)

  • Lee, Hyunok;Lee, Hyunju
    • Journal of The Korean Association For Science Education
    • /
    • v.35 no.1
    • /
    • pp.169-177
    • /
    • 2015
  • Since socioscientific issues (SSI) reflect various characteristics of new technologies designed to meet the incessant human needs in the contemporary society, this study explores the feasibility of adapting nature of technology (NOT) to analyze students' socioscientific decision-making. To achieve the aim, forty-five college students enrolled in a liberal arts course on science and technology studies participated in the study and responded to a GMO (golden rice) scenario in a written form. Four major viewpoints were identified from their writing: 1) is the technological artifact able to solve a societal problem?, 2) are there some alternatives to solve the societal problem?, 3) what kinds of side effects or flaws could turn up during distribution and consumption of the technological artifact?, and 4) can we cope with the technological uncertainty? We revisited the viewpoints within the NOT framework (technology as a 'fix,' cultural context and role of values, technological trade-offs, technology as a system, and technological progression). As a result, unlike NOS, NOT were quite explicitly represented in their decision-making and students' level of understanding on NOT varied. It indicates that NOT can be a promising construct for cultivating informed SSI decision-making.

Analysis of Preservice Elementary Teachers' Critiques of Peers' Inquiry-Based Instruction (예비 초등교사들의 동료 탐구 수업 비평 분석)

  • Lee, Shinyoung
    • Journal of The Korean Association For Science Education
    • /
    • v.39 no.3
    • /
    • pp.389-403
    • /
    • 2019
  • This study aims to analyze criteria and characteristics for preservice elementary teachers' critiques of their peers' inquiry-based instruction. This study reviews critiques written by 31 preservice elementary teachers enrolled in an elementary school science inquiry methods course wherein the teachers designed and implemented inquiry-based instruction. These preservice teachers participated in inquiry-based instruction as if they were elementary students and then evaluated their peers' instruction. Analysis of the critiques reveals that preservice teachers evaluated their peers' instruction on the following criteria: instruction context, science content, teaching strategies, students, instructional goals, non-verbal attitude, and assessment. Their beliefs about teaching science inquiry were reflected in the critiques. Additionally, it was found that four orientation for teaching inquiry-didactic, academic rigor, activity-driven, inquiry orientation-reflected in critiques; some of critiques held more than one of these orientations. And they did not merely criticize but suggested alternatives to general teaching strategies; furthermore, of inquiry-instruction specific teaching strategies. They showed higher epistemic understanding of inquiry-based instruction after mid-term demonstrations. The evidence demonstrated that the proportion of critiques specifically about inquiry-based instruction increased after the mid-term demonstrations. Moreover, the post mid-term critiques emphasized interaction between students as well as understanding of the nature of science. These findings could provide implication for teaching inquiry and criticizing others' instruction as part of elementary school science courses in preservice elementary teacher education.