• Title/Summary/Keyword: 대수층 깊이

Search Result 25, Processing Time 0.025 seconds

Application of Geophysical Methods to Detection of a Preferred Groundwater Flow Channel at a Pyrite Tailings Dam (황철석 광산 광미댐에서의 지하수흐름 경로탐지를 위한 물리탐사 적용)

  • Hwang, Hak Soo
    • Economic and Environmental Geology
    • /
    • v.30 no.2
    • /
    • pp.137-142
    • /
    • 1997
  • At the tailings dam of the disused Brukunga pyrite mine in South Australia, reaction of groundwater with the tailings causes the formation and discharge of sulphuric acid. There is a need to improve remediation efforts by decreasing groundwater flow through the tailings dam. Geophysical methods have been investigated to determine whether they can be used to characterise variations in depth to watertable and map preferred groundwater flow paths. Three methods were used: transient electromagnetic (TEM) soundings, direct current (DC) soundings and profiling, and self potential (SP) profiling. The profiling methods were used to map the areal extent of a given response, while soundings was used to determine the variation in response with depth. The results of the geophysical surveys show that the voltages measured with SP profiling are small and it is hard to determine any preferred channels of groundwater flow from SP data alone. Results obtained from TEM and DC soundings, show that the DC method is useful for determining layer boundaries at shallow depths (less than about 10 m), while the TEM method can resolve deeper structures. Joint use of TEM and DC data gives a more complete and accurate geoelectric section. The TEM and DC measurements have enabled accurate determination of depth to groundwater. For soundings centred at piezometers, this depth is consistent with the measured watertable level in the corresponding piezometer. A map of the watertable level produced from all the TEM and DC soundings at the site shows that the shallowest level is at a depth of about 1 m, and occurs at the southeast of the site, while the deepest watertable level (about 17 m) occurs at the northwest part of the site. The results indicate that a possible source of groundwater occurs at the southeast area of the dam, and the aquifer thickness varies between 6 and 13 m. A map of the variation of resistivity of the aquifer has also been produced from the TEM and DC data. This map shows that the least resistive (i.e., most conductive) section of the aquifer occurs in the northeast of the site, while the most resistive part of the aquifer occurs in the southeast. These results are interpreted to indicate a source of fresh (resistive) groundwater in the southeast of the site, with a possible further source of conductive groundwater in the northeast.

  • PDF

Assessment of Regional Groundwater Pollution Hazard using Potential Pollutant of Pohang Area (잠재오염원을 이용한 포항지역의 광역적 지하수 오염 위험성 평가)

  • Lee, Sa-Ro;Kim, Yong-Seong;Kim, Deuk-Geun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.3
    • /
    • pp.1-13
    • /
    • 2006
  • The aim of the study is to assess groundwater pollution hazard of Pohang city using the DRASTIC system developed by the US Environmental Protection Agency (USEPA). Hydrogeological spatial databases of the system include information on depth to groundwater, net recharge, aquifer media, soil media, topographic slope, hydraulic conductivity, lineament and potential pollution source. With GIS based on these hydrogeological databases and the DRASTIC system, the regional groundwater vulnerability of the study area was assessed. Then the vulnerability was overlaid with potential pollution source and the regional groundwater pollution hazard was assessed by administrative district. From the results of the study, areas where need the counter plan for groundwater pollution and where should be managed for the groundwater pollution, are identified.

  • PDF

Forward and Back Diffusion from Low Permeability Zone: A Review of Analytical Solutions with Different Boundary Conditions (저투수성 매체 내 오염물질의 정확산과 역확산: 경계조건에 따른 용질이동 해석해의 소개)

  • Kim, Changmin;Yang, Minjune
    • Economic and Environmental Geology
    • /
    • v.53 no.1
    • /
    • pp.99-110
    • /
    • 2020
  • It is a global trend to consider contaminated low-permeability zones as one of the primary management targets for the remediation of DNAPL contaminated sites. In addition, studies on the persistence caused by back diffusion of DNAPLs from low-permeability zones have been actively conducted worldwide. On the other hand, the studies for domestic groundwater contamination with the low-permeability zones are insufficient. Therefore, this study introduces the forward and back diffusions of DNAPL through low-permeability zones and suggests the importance of them by reviewing representative previous studies, especially on back diffusion and plume persistence. We proposed six diffusion scenarios and analytical solutions based on various boundary conditions of low-permeability zones. FI (forward diffusion into infinite domain) and BI (back diffusion form infinite domain) scenarios illustrate forward and back diffusion in which the depths of a low-permeability layer are assumed to be infinite. FFN (forward diffusion into finite domain with no flux boundary) and BFN (back diffusion from finite domain with no flux boundary) scenarios describe forward and back diffusion for a finite domain of a low-permeability layer with no flux boundary at the bottom. When the bottom of a low-permeability layer is considered as flux boundary, forward and back diffusion scenarios correspond to FFF (forward diffusion into finite domain with flux boundary) and BFF (back diffusion from finite domain with flux boundary). The scenarios and analytical solutions in this study may contribute to the determination of an efficient remediation method based on site characteristics such as a thickness of low-permeability zones or duration of contamination exposure.

Assessment of Hydrogeochemical Characteristics and Contaminant Dispersion of Aquifer around Keumsan Municipal Landfill (금산 매립장 주변 대수층의 수리지화학적 특성 및 오염 확산 평가)

  • Oh, In-Suk;Ko, Kyung-Seok;Kong, In-Chul;Ku, Min-Ho
    • Economic and Environmental Geology
    • /
    • v.41 no.6
    • /
    • pp.657-672
    • /
    • 2008
  • The purposes of this study are to investigate the hydrogeochemical characteristics of groundwaters around Keumsan municipal landfill, and to evaluate the contaminant dispersion from the landfill and its environmental impact. To achieve these goals, groundwater quality logging, hydrochemical analysis, multivariate statistical analysis, and contaminant transport modeling were performed. The water quality logging indicated a leaking from the landfill at the depth of 4-12m around a leachate sump. Electrical conductivity data indicated that groundwaters within 70-100m from landfill were affected by the landfill leakage. Principal components 1 and 2 obtained from principal components analysis (PCA) reflect the influence of leachate and the characteristics of aquifer media, respectively. The results of principal component analysis also indicated the natural attenuation processes such as cation exchange, sorption, and microbial biodegradation. The modeling results showed that groundwater flow westward along a valley from the landfill and contaminants transport accordingly.

Time-lapse crosswell seismic tomography for monitoring injected $CO_2$ in an onshore aquifer, Nagaoka, Japan (일본 Nagaoka의 육상 대수층에 주입된 $CO_2$의 관찰을 위한 시간차 시추공간 탄성파 토모그래피)

  • Saito, Hideki;Nobuoka, Dai;Azuma, Hiroyuki;Xue, Ziqiu;Tanase, Daiji
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.1
    • /
    • pp.30-36
    • /
    • 2006
  • Japan's first pilot-scale $CO_2$ sequestration experiment has been conducted in Nagaoka, where 10400 t of $CO_2$ have been injected in an onshore aquifer at a depth of about 1100 m. Among various measurements conducted at the site for monitoring the injected $CO_2$, we conducted time-lapse crosswell seismic tomography between two observation wells to determine the distribution of $CO_2$ in the aquifer by the change of P-wave velocities. This paper reports the results of the crosswell seismic tomography conducted at the site. The crosswell seismic tomography measurements were carried out three times; once before the injection as a baseline survey, and twice during the injection as monitoring surveys. The velocity tomograms resulting from the monitoring surveys were compared to the baseline survey tomogram, and velocity difference tomograms were generated. The velocity difference tomograms showed that velocity had decreased in a part of the aquifer around the injection well, where the injected $CO_2$ was supposed to be distributed. We also found that the area in which velocity had decreased was expanding in the formation up-dip direction, as increasing amounts of $CO_2$ were injected. The maximum velocity reductions observed were 3.0% after 3200 t of $CO_2$ had been injected, and 3.5% after injection of 6200 t of $CO_2$. Although seismic tomography could map the area of velocity decrease due to $CO_2$ injection, we observed some contradictions with the results of time-lapse sonic logging, and with the geological condition of the cap rock. To investigate these contradictions, we conducted numerical experiments simulating the test site. As a result, we found that part of the velocity distribution displayed in the tomograms was affected by artefacts or ghosts caused by the source-receiver geometry for the crosswell tomography in this particular site. The maximum velocity decrease obtained by tomography (3.5%) was much smaller than that observed by sonic logging (more than 20%). The numerical experiment results showed that only 5.5% velocity reduction might be observed, although the model was given a 20% velocity reduction zone. Judging from this result, the actual velocity reduction can be more than 3.5%, the value we obtained from the field data reconstruction. Further studies are needed to obtain more accurate velocity values that are comparable to those obtained by sonic logging.

Numerical Simulation of Groundwater Flow in Feterogenetic Rockmass of Unsaturated Condition (암반의 불균질성을 고려한 불포화대 지하수 유동 평가)

  • Ha, Jaechul;Lee, Jeong Hwan;Cheong, Jae-yeol;Jung, Haeryong
    • The Journal of Engineering Geology
    • /
    • v.26 no.1
    • /
    • pp.87-99
    • /
    • 2016
  • We present the results of two-dimensional numerical simulations predicting the flow of groundwater in a fractured unsaturated zone. We applied the k-field distribution of permeability derived from discrete fracture network (DFN) modeling as the hydraulic properties of a model domain. To model an unsaturated zone, we set the depth from the ground surface to the underground aquifer. The rate of water infiltration into the unsaturated zone was divided into two parts, an artificial structure surface and unsaturated soil zone. The movement of groundwater through the unsaturated zone was simulated with particular emphasis on contaminant transport. It was clearly observed that the contaminants dissolved in groundwater transported vertically from the ground surface to the saturated zone.

Cause of Groundwater Yield Reduction in a Collector Well Considering Sediment's Composition and Hydrogeochemical Characteristics (지층 및 이화학 특성을 고려한 방사형 집수정의 취수량 감소 원인 분석)

  • Kim, Gyoo-Bum;Lee, Chi-Hyung;Oh, Dong-Hwan
    • The Journal of Engineering Geology
    • /
    • v.27 no.4
    • /
    • pp.439-449
    • /
    • 2017
  • The cause of yield reduction in a collector well, which is located in Anseong-cheon watershed in Kyunggi province, is studied by using aquifer sediments' composition and hydraulic conductivity near four horizontal wells, no. 1, no. 4, no. 6, and no. 7 wells. During test-pumping periods, groundwater yield is reduced with a trend of $12.4m^3/d/d$ at no. 1, $2.3m^3/d/d$ at no. 4, $24.4m^3/d/d$ at no. 6, and $187.3m^3/d/d$ at no. 7 and no. 7 well shows the biggest reduction. The sediments along no. 7 horizontal well have low hydraulic conductivity and high coefficient of uniformity ($C_u$), and a deviation of $C_u$ along the well is also large. This characteristics can bring the fine particles' movement and make the openings filled. Additionally, high iron ($Fe^{2+}$) content results in a precipitation of iron hydroxides during pumping or injection and they can produce a clogging in sediments. In the future study, the analysis of physical and hydrochemical changes through a long-term pumping procedure will give a more exact interpretation for the cause of yield reduction.

Robust 1D inversion of large towed geo-electric array datasets used for hydrogeological studies (수리지질학 연구에 이용되는 대규모 끄는 방식 전기비저항 배열 자료의 1 차원 강력한 역산)

  • Allen, David;Merrick, Noel
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.1
    • /
    • pp.50-59
    • /
    • 2007
  • The advent of towed geo-electrical array surveying on water and land has resulted in datasets of magnitude approaching that of airborne electromagnetic surveying and most suited to 1D inversion. Robustness and complete automation is essential if processing and reliable interpretation of such data is to be viable. Sharp boundaries such as river beds and the top of saline aquifers must be resolved so use of smoothness constraints must be minimised. Suitable inversion algorithms must intelligently handle low signal-to-noise ratio data if conductive basement, that attenuates signal, is not to be misrepresented. A noise-level aware inversion algorithm that operates with one elastic thickness layer per electrode configuration has been coded. The noise-level aware inversion identifies if conductive basement has attenuated signal levels so that they are below noise level, and models conductive basement where appropriate. Layers in the initial models are distributed to span the effective depths of each of the geo-electric array quadrupoles. The algorithm works optimally on data collected using geo-electric arrays with an approximately exponential distribution of quadrupole effective depths. Inversion of data from arrays with linear electrodes, used to reduce contact resistance, and capacitive-line antennae is plausible. This paper demonstrates the effectiveness of the algorithm using theoretical examples and an example from a salt interception scheme on the Murray River, Australia.

Flow Dimensional Analysis for Constant Pressure Injection Test (정압주입시험을 이용한 지하수유동차원 해석)

  • 이은용
    • The Journal of Engineering Geology
    • /
    • v.3 no.2
    • /
    • pp.149-165
    • /
    • 1993
  • Nowadays, the field hydraulic test is still an only method to evaluate groundwater characteristics in subsurface. The results of hydraulic test are very important for the concept model of fracture hydrogeology as well as the geometric pattern of fractures. The hydraulic tests performed in Korea are generally analysed under such assumption as steady radial flow in homogeneous aquifer or along simple geometry of fractures. Also the transmissivity measured in a fixed interval length is equivalent to a sum of individual fracture transmissivities in test legth. The boundary effects of weH hydraulics and the geometry of flow paths are hardly obtained from the test results analysed by a steady flow method. To circumvent this problem, the flow dimensional analysis was attempted from the results of constant pressure injection test carried out in a fractured granite area. A comparison of the hydraulic conductivity values from the transient and steady analysis shows that the latter is about a factor of 2~3 higher than the former. However, it was possible to analyse a flow dimension of each test interval from flow rate variation with time. The upper part of the bedrock(<10m deep) indicates an open boundary and the flow dimension shows nearly steady states, while the lower part of the bedrock(>25m deep) is characterized as sublinear flow dimension with a dosed boundary. In one of the test sections(15m deep), the flow dimension was changed from linear flow to spherical flow. From the experience of this study, one of the immediate problems to be solved is to enhance the field testing equipments, i.e., an accurate flowmeter with autorecording and a pressure detecting device to be able to install in the test section.

  • PDF

Analysis of Groundwater Pollution Potential and Development of Graphic User Interface using DRASTIC System (DRASTIC을 이용한 지하수 오염 가능성 분석 및 그래픽 사용자 인터페이스 개발연구)

  • 민경덕;이영훈;이사로;김윤종;한정상
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.3 no.2
    • /
    • pp.101-109
    • /
    • 1996
  • DRASTIC system was used in this study that was developed by U.S. EPA and is widely used for evaluating relative groundwater pollution potential by using hydrogeological factors. The DRASTIC system can be used for selection of well sites, selection of waste disposal sites and basic data of landuse for groundwater protection, and monitoring purpose and efficient allocation of resource for remediation. This study analyzed regional groundwater pollution potential around Chungju Lake using the DRASTIC system. Hydrogeological factors used in this study are depth to water, net recharge, aquifer media, soil media, slope and hydraulic conductivity. For accurate analysis, lineament density that is extracted from image processing of satellite image is overlaid to the DRASTIC system. Results of this study are mapped so groundwater pollution potential and risk degrees can be understood easily and quickly. A graphic user interface is developed to process the data conveniently.

  • PDF