Time-lapse crosswell seismic tomography for monitoring injected $CO_2$ in an onshore aquifer, Nagaoka, Japan

일본 Nagaoka의 육상 대수층에 주입된 $CO_2$의 관찰을 위한 시간차 시추공간 탄성파 토모그래피

  • Published : 2006.02.28

Abstract

Japan's first pilot-scale $CO_2$ sequestration experiment has been conducted in Nagaoka, where 10400 t of $CO_2$ have been injected in an onshore aquifer at a depth of about 1100 m. Among various measurements conducted at the site for monitoring the injected $CO_2$, we conducted time-lapse crosswell seismic tomography between two observation wells to determine the distribution of $CO_2$ in the aquifer by the change of P-wave velocities. This paper reports the results of the crosswell seismic tomography conducted at the site. The crosswell seismic tomography measurements were carried out three times; once before the injection as a baseline survey, and twice during the injection as monitoring surveys. The velocity tomograms resulting from the monitoring surveys were compared to the baseline survey tomogram, and velocity difference tomograms were generated. The velocity difference tomograms showed that velocity had decreased in a part of the aquifer around the injection well, where the injected $CO_2$ was supposed to be distributed. We also found that the area in which velocity had decreased was expanding in the formation up-dip direction, as increasing amounts of $CO_2$ were injected. The maximum velocity reductions observed were 3.0% after 3200 t of $CO_2$ had been injected, and 3.5% after injection of 6200 t of $CO_2$. Although seismic tomography could map the area of velocity decrease due to $CO_2$ injection, we observed some contradictions with the results of time-lapse sonic logging, and with the geological condition of the cap rock. To investigate these contradictions, we conducted numerical experiments simulating the test site. As a result, we found that part of the velocity distribution displayed in the tomograms was affected by artefacts or ghosts caused by the source-receiver geometry for the crosswell tomography in this particular site. The maximum velocity decrease obtained by tomography (3.5%) was much smaller than that observed by sonic logging (more than 20%). The numerical experiment results showed that only 5.5% velocity reduction might be observed, although the model was given a 20% velocity reduction zone. Judging from this result, the actual velocity reduction can be more than 3.5%, the value we obtained from the field data reconstruction. Further studies are needed to obtain more accurate velocity values that are comparable to those obtained by sonic logging.

일본의 첫 번째 파일럿 규모의 $CO_2$격리실험이 Nagaoka 에서 약 1,100m 깊이의 육상 대수층에 10,400 톤의 $CO_2$를 주입하면서 행해졌다. 주입된 $CO_2$ 의 모니터링을 위해서 그 지역에서 행해진 다양한 측정들 중, P 파 속도의 변화를 이용하여 2 개의 관측정 사이에서 대수층 내의 $CO_2$ 분포를 알기 위해 시간차 시추공간 탄성파 토모그래피가 실시되었다. 이 논문은 탄성파 토모그래피에 대한 예비적인 결과들이다. 시추공간 탄성파 토모그래피 측정이 3 회에 걸쳐 실시되었는데, 한 번은 기준 조사로서 주입 전에, 나머지 두 번은 모니터링 조사를 위해 주입 중에 이루어졌다. 모니터링 조사로부터의 속도 분포도를 기준 조사 속도 분포도와 비교하여 속도 차 분포도가 만들어졌다. 속도 차 분포도는 주입된 $CO_2$가 퍼져있다고 예상되는 주입정 주변 대수층 부분에서 소도 감소 지역을 보여준다. 비록 탄성파 토모그래피가 $CO_2$주입에 따른 속도 감소 지역을 제공할 수 있었지만 속도 차 분포도에서 다소 이상한 속도 분포 지역이 관측되었다. 그러한 현상의 발생을 조사하기 위해서 조사 지역을 모사하는 수치모형 실험을 수행하였다. 그 결과 우리는 속도 차 분포도에서 발생한 이상한 속도 분포는 인위적인 오차이거나 이 지역에서 행해진 시추공간 탐사의 송수신기 배열에 의한 고스트라고 확신할 수 있었다. 토모그래피에 의해서 얻어진 최대 속도 감소 비율은 음파검층에 의해 관측된 것보다 아주 작았다. 비록 탄성파 토모그래피에 대한 수치모형 실험에 의해서도 불일치가 확인되었으나 음파검층에 의해 획득한 속도 값에 비교될 수 있는 좀 더 정확한 속도 값을 얻기 위해 앞으로 더 많은 연구가 필요하다.

Keywords

References

  1. Eiken, O., 2004, Review of geophysical monitoring results from the SACS project presented at lEA Monitoring and Verification Workshop, Santa Cruz, November, 2004
  2. Harris, J., Nolen-Hoeksema, R., Langan, R., Schaack, M., Lazaratos, S., and Rector III, J., 1995, High-resolution crosswell imaging of a west Texas carbonate reservoir: Part I - Project summary and interpretation: Geophysics, 60, 667-681 https://doi.org/10.1190/1.1443806
  3. Hoversten, G., Gritto, R., Washboume, J., and Daley, T., 2003, Pressure and fluid saturation prediction in a multicomponent reservoir using combined seismic and electromagnetic imaging: Geophysics, 68, 1580-1591 https://doi.org/10.1190/1.1620632
  4. Lazaratos, S., and Marion, B., 1997, Crosswell seismic imaging of reservoir changes caused by $CO_2$ injection: The Leading Edge, 16, 1300-1306 https://doi.org/10.1190/1.1437788
  5. Saito, H., 1989, Traveltimes and raypaths of first arrival seismic waves: Computation method based on Huygens principle: 59th Annual International Meeting, Society of Exploration Geophysicists, Expanded Abstracts, 244--247
  6. Saito, H., 1992, Characteristics of the first arrival traveltime curves obtained by crosshole seismic measurements: Proceedings of the 86th SEGJ Conference, 88-93
  7. Saito, H., 2001, Seismic traveltime tomography for shallow subsurface explorations: Ph.D. thesis (unpublished), Hokkaido University
  8. Sanny, T., and Sassa, K., 1994, Reduction of the effect of the near surface low velocity layer in tomographic imaging: Proceedings of the 90th SEGJ Conference, 84-88
  9. Spetzler, J., and Sneider, R., 2004, Tutorial: The Fresnel volume and transmitted waves: Geophysics, 69, 653-663 https://doi.org/10.1190/1.1759451
  10. White, D., 2004, Seismic results from the Weyburn monitoring project: presented at lEA Monitoring and Verification Workshop, Santa Cruz, November, 2004
  11. Xue, Z., and Ohsumi, T., 2004, Seismic wave monitoring of $CO_2$, migration in water-saturated porous sandstone: Butsuri-Tansa (Geophysical Exploration), 57,25-32
  12. Xue, Z., Tanase, D., Watanabe, J., and Inoue, N., 2006, Time-lapse $CO_2$, monitoring well logging and quantitative evaluation of $CO_2$ saturation in an onshore aquifer, Nagaoka, Japan: Exploration Geophysics, 37, (this issue)
  13. Yokota, T., Ishii, Y, Shimada, S., Mizohata, S., Shoji, Y, Ohhashi, T., and Ogura, K., 2000, Development of a multi-disk type borehole seismic source - Aiming at practical applications for oil field survey - : Butsuri- Tansa (Geophysical Exploration), 53, 309-323
  14. Yokota, T., Nishida, A., Mizohata, S., Shimada, N., and Muraoka, S., 2003, Tomographic inversion for time-lapse oil reservoir monitoring: Butsuri- Tansa (Geophysical exploration), 56, 181-189