• Title/Summary/Keyword: 대륙주변부해역

Search Result 20, Processing Time 0.029 seconds

Temperature Variabilities at Upper Layer in the Korean Marine Waters Related to Climate Regime Shifts in the North Pacific (한국주변해역 상층부의 수온 변동과 북태평양 기후체제와의 관계)

  • Rahman, SM M.;Lee, Chung Il
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.1
    • /
    • pp.145-151
    • /
    • 2016
  • Temperature variability at the upper layer related to climate regime shifts in the Korean waters was illustrated using water temperature, climate index. Three major climate regime shifts (CRS) in 1976, 1988 and 1998 in north Pacific region had an significant influence on the major marine ecosystems structure pattern. Three marginal seas around Korean peninsula; East Sea, East China Sea and Yellow Sea also got important impact from this kind of decadal shift. We used 10m sea water temperatures in four regions of Korean waters since 1950 to detect major fluctuation patterns both seasonally and also decadal shift. 1988 CRS was occurred in all of the study areas in most seasons however, 1998 CRS was only detected in the Yellow Sea and in the southern part of the East Sea. 1976 CRS was detected in all of the study area mainly in winter. After 1998 CRS, the water temperature in the southern part of the East Sea, East China Sea and Yellow Sea were going into decreased pattern; however, in the northern part of the East Sea, it was further shifted to increasing pattern which was started from 1988 CRS period.

Distribution of gas hydrates off northern Antarctic Peninsula (남극반도 북부해역의 가스하이드레이트 분포)

  • Hong, Jong-Kuk;Jin, Young-Keun;Lee, Joo-Han;Park, Min-Kyu;Nam, Sang-Heon;Goo, Kyoung-Mo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.524-527
    • /
    • 2007
  • 남극 반도 북부해역은 남극대륙 주변부에 존재하는 가스하이드레이트 매장 유망지역중의 하나이다. 남극반도 북부해역내에서 BSR이 가장 뚜렷이 나타나는 남셰틀랜드 군도의 대륙주변부에서 가스하이드레이트 특성 및 분포를 연구하기 위한 탄성파 탐사가 1992년, 2005년도 수행되었다. 이 지역에 나타나는 BSR은 대륙사면에서 광범위하게 발달되어있다. 이 지역 BSR에 대한 AVO 분석결과에 의하면 BSR상부지층은 높은 탄성파 속도를 갖으며 하부지층은 가스를 포함하는 것으로 밝혀졌다. 탄성파 단면에 나타난 BSR의 발견지역을 대상으로 분포도를 작성하였으며, 이 지역에 대한 추가적인 탄성파 탐사 완료 후에는 정확한 매장량과 분포가 밝혀질 것이다.

  • PDF

동중국해 북부해역 수온, 염분의 분포 변동 특성

  • Jang, Lee-Hyeon;Kim, Sang-U;Go, U-Jin;Geleekko, Yamada;Seo, Yeong-Sang
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2007.05a
    • /
    • pp.331-335
    • /
    • 2007
  • 본 연구에서는 장기간의 현장관측 수온, 염분자료를 분석하여 동중국해 북부해역에서 계절별 수온, 염분의 변동 특성을 조사하였다. 표층의 경우 춘계 수온상승에는 공간적인 차이가 있다. 또한 서부해역($125^{\circ}E$ 이서)에서는 32 psu 이하의 저염 분포가 나타나고 제주 남서해역에서 33psu 이하의 저염수가 춘계부터 제주 주변해역으로 확장한다. 하계 표층염분은 $28.0{\sim}32.4$ psu로 연중 최저값은 보이며, 전해역 표층 염분이 33psu 이하로 저염의 양자강 희석수가 하계에 동중국해 북부해역 표층 전체에 영향을 미치고 있다. 추계의 표층수온과 염분은 동고서저형의 수평분포를 나타낸다. 수온 하강은 서부해역인 대륙 연안수역이 동부의 대마난류수역에 비해 크고, 서부해역에서 33psu 이하의 설상형 저염분포가 이시기에 남동쪽으로 관입되는 형태로 나타나 동계의 남북방향의 염분전선과 이어지게 된다. 연직해황의 경우 동계 수온과 염분은 활발한 대륙작용에 의해 전수층에서 균일한 분포를 나타내며, 대륙연안수역에서는 저온, 저염($12^{\circ}C$, 33psu 이하)의 분포를, 대마난류수역에서는 고온, 고염($16^{\circ}C$, 34.4psu 이상)분포의 지역적인 특성으로 구별된다. 춘계에는 수온약층이 형성되며, 저층에는 동계에 형성되어 대륙연안수와 외양수 사이에 고립된 $13^{\circ}C$ 이하의 냉수괴가 분포한다. 염분은 표층 저염화가 시작된다. 하계에는 양자강 유출수의 영향으로 전해역 표층에서는 30psu 이하로 전해역에서 저염화 양상이 나타나며, 표층에서 30m 층까지 매우 강한 염분약층이 형성된다. 추계 수온 엽문은 균일한 연직수온분포가 나타나며, 동부해역에서는 수심 $75{\sim}100m$사이에서 수온, 염분약층이 형성된다. 동중국해의 수괴는 뚜렷한 계절 변동을 보이며, 대마난류수역인 동부해역에서는 수괴 계절변동의 요인으로 계절 수온변동이 지배적이고, 수온변동은 춘계와 하계 사이에 가장 크다. 중앙부와 대륙연안역인 서부해역에서는 수괴 계절변동에 수온외에 염분 변화가 주요한 요인으로 작용하며, 염분은 하계와 추계 사이에 가장 변동이 크게 나타난다. 즉, 동중국해의 수괴변동에는 변동요인에 따른 공간적인 차이가 있으며, 수괴변화 특성으로 동중국해는 수온변화가 수괴변동에 직접요인이 되는 동부 대마난류수역과 염분변화가 수괴변동의 직접요인인 서부의 대륙연안수역으로 구분된다.

  • PDF

A Study on China Coastal Water Appeared in the Neighbouring Seas of Cheju Island (제주도 주변해역에 출현하는 중국대륙연안수에 관한 연구)

  • KIM In-Ok;RHO Hong-Kil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.27 no.5
    • /
    • pp.515-528
    • /
    • 1994
  • China Coastal Water(CCW) appeared in the neighbouring seas of Cheju Island has been analyzed and the results are as follows: The water with salinity below $32.20\%0$ in the neighbouring seas of Cheju Island in summer is thought CCW. During the period from April 1985 to August 1986, salinity of more than $34.00\%0$ was appeared in the Cheju Strait during January to mid May, but it decreased gradually from late May. CCW with salinity below $32.20\%0$ appeared in the Cheju Strait in early July and disappeared in October. The mean thickness of CCW in the Cheju Strait was about 25m and CCW had an influence of up to about 50m depth. And stratification structure of the Cheju Strait in summer was halocline between the surface and 50m depth and homogeneous salinity layer below 50m depth. It seems that although CCW appears in the wide area of neighbouring seas surface of Cheju Island in summer, the core of this CCW which has the lowest salinity flows into the Cheju Strait from the western seas of Cheju Island. This CCW flows out the east through the central part of the Cheju Strait and then seems to be transported further in the form of eddy.

  • PDF

제주도 남방 마라도 주변해역의 방어어장형성기구에 관한 연구

  • 김준택;노홍길;김상현
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2001.10a
    • /
    • pp.39-40
    • /
    • 2001
  • 제주도 주변해역은 계절에 따라 다양한 이질수괴(대마난류계수, 황해지층냉수계수, 중국대륙연안수, 한국남해연안수 등)가 출현하고 있으며 이들 여러수괴의 분포상태에 따라 고등어, 전갱이, 방어, 삼치 등과 같은 여러 회유성 어종이 시기별 출현상황이 달라지고 있다(노, 1985; Nakao, 1977; 김ㆍ노, 1994; 김, 1995). 그중 방어(Yellow tail, Seriola quinqueradiata, TEMMINCK et SCHL-ECEL)는 제주도 주변해역에는 추ㆍ동계가 되면 제주도 북서쪽 추자도 주변어장을 시작으로 제주해협의 화도(속칭:관탈도)를 거쳐 제주도 남서부 마라도로 연결되는 방어어장이 매년 형성되며 특히, l1∼12월 사이의 어획량은 전국 방어 채낚기어업의 어획량의 대부분을 차지하고 있을 정도로 그 규모가 매우크다. (중략)

  • PDF

Crustal Structure of the Continent-Ocean Zone around the Middle Eastern Part of Korean Peninsula Using Gravity Data (중력자료를 이용한 한반도 중부 대륙-해양 지역의 지각구조 연구)

  • 유상훈;민경덕;박찬홍;원중선
    • Economic and Environmental Geology
    • /
    • v.35 no.5
    • /
    • pp.455-463
    • /
    • 2002
  • There have been few geophysical studies on the crustal structure of the continent-ocean zone around the middle eastern part of Korean peninsula, because of the lack of database in both land and ocean. The area for the study on the internal crustal structure using gravity data is bounded by the latitude of 37$^{\circ}$-38"N and longitude of 128$^{\circ}$-132$^{\circ}$E. WCA correction is applied to shipborne gravity data to integrate with gravity anomalies obtained on land. The high frequency components of the shipborne gravity data which are considered as the noise on survey track are effectively removed by means of correlating with satellite gravity data. The corrected shipborne free-air gravity anomaly is integrated with the Bouguer gravity anomaly on land under the same condition. The integrated gravity anomaly is divided into four areas for power spectrum analysis. The depths of Moho discontinuity increases gradually from inland to Ulleung basin. As the result of modeling based on power spectrum analysis, Moho discontinuity depth is about 33-35 km in the continental zone of Korea and 18-28 km at the continental margin. Such structural character is well elucidated in changing gravity data around Ulleung basin. The depths of Moho discontinuity in the southern ocean of Ulleung-island is 16--17 km, which is much lower than in the land. The result of crustal structure modeling in this study is similar to that computed by prior seismic exploration around this area.

Structural Evolution of the Eastern Margin of Korea: Implications for the Opening of the East Sea (Japan Sea) (한국 동쪽 대륙주변부의 구조적 진화와 동해의 형성)

  • Kim Han-Joon;Jou Hyeong-Tae;Lee Gwang-Hoon;Yoo Hai-Soo;Park Gun-Tae
    • Economic and Environmental Geology
    • /
    • v.39 no.3 s.178
    • /
    • pp.235-253
    • /
    • 2006
  • We interpreted marine seismic profiles in conjunction with swath bathymetric and magnetic data to investigate rifting to breakup processes at the Korean margin leading to the separation of the Japan Arc. The Korean margin is rimmed by fundamental elements of rift architecture comprizing a seaward succession of a rift basin and an uplifted rift flank passing into the slope, typical of a passive continental margin. In the northern part, rifting occurred in the Korea Plateau, a continental fragment extended and partially segmented from the Korean Peninsula, that provided a relatively broader zone of extension resulting in a number of rifts. Two distinguished rift basins (Onnuri and Bandal Basins) in the Korea Plateau we bounded by major synthetic and smaller antithetic faults, creating wide and symmetric profiles. The large-offset border fault zones of these basins have convex dip slopes and demonstrate a zig-zag arrangement along strike. In contrast, the southern margin is engraved along its length with a single narrow rift basin (Hupo Basin) that is an elongated asymmetric half-graben. Rifting at the Korean margin was primarily controlled by normal faulting resulting from extension in the west and southeast directions orthogonal to the inferred line of breakup along the base of the slope rather than strike-slip deformation. Although rifting involved no significant volcanism, the inception of sea floor spreading documents a pronounced volcanic phase which seems to reflect slab-induced asthenospheric upwelling as well as rift-induced convection particularly in the narrow southern margin. We suggest that structural and igneous evolution of the Korean margin can be explained by the processes occurring at the passive continental margin with magmatism intensified by asthenospheric upwelling in a back-arc setting.

High-resolution Seismic Imaging of Shallow Geology Offshore of the Korean Peninsula: Offshore Uljin (신기 지구조운동의 해석을 위한 한반도 근해 천부지질의 고해상 탄성파 탐사: 울진 주변해역)

  • Kim, Han-Joon;Jou, Hyeong-Tae;Yoo, Hai-Soo;Kim, Kwang-Hee;You, Lee-Sun
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.2
    • /
    • pp.127-132
    • /
    • 2011
  • We acquired and interpreted more than 650 km of high-resolution seismic reflection profiles in the Hupo Basin, offshore east coast of Korea at $37^{\circ}N$ in the East Sea (Japan Sea) to image shallow and basement deformation. The seismic profiles reveal that the main depocenter of the Hupo Basin in the study area is bounded by the large offset Hupo Fault on the east and an antithetic fault on the west; however, the antithetic fault is much smaller both in horizontal extension and in vertical displacement than the Hupo Fault. Sediment infill in the Hupo Basin consists of syn-rift (late Oligocene. early Miocene) and post-rift (middle Miocene.Holocene) units. The Hupo Fault and other faults newly defined in the Hupo Basin strike dominantly north and show a sense of normal displacement. Considering that the East Sea has been subjected to compression since the middle Miocene, we interpret that these normal faults were created during continental rifting in late Oligocene to early Miocene times. We suggest that the current ENE direction of maximum principal compressive stress observed in and around the Korean peninsula associated with the motion of the Amurian Plate induces the faults in the Hupo Basin to have reverse and right-lateral, strike-slip motion, when reactivated. A recent earthquake positioned on the Hupo Fault indicates that in the study area and possibly further in the eastern Korean margin, earthquakes would occur on the faults created during continental rifting in the Tertiary.

Interpretation of geological structures and stratigraphy around the Kita-Yamato Bank in the East Sea (동해 키타-야마토 뱅크 주변 해역의 지질구조 및 퇴적층서 해석)

  • Huh Sik;Yoo Hai Soo;Park Chan Hong;Han Sang Joon;Jou Hyeong Tae
    • The Korean Journal of Petroleum Geology
    • /
    • v.9 no.1_2 s.10
    • /
    • pp.16-23
    • /
    • 2001
  • The study area in the East Sea is located on the northeastern margins of the Ulleung Basin near the Kita-Yamato Bank. The research area provides the important clue to the development of Miocene basins which are characterized by the normal faults and volcanic activities related to rifting in the continental crust. Kita-Yamato Bank is a small sediment-filled graben which was formed by failed rifting in the Early Miocene. The basins rapidly vary the bathymetry, depth of acoustic basement and thickness of sedimentary layer. The tension in the study area caused the extensional lithospheric deformation before/during the Early Miocene. In consequence, tectonic forces resulted in the depression or subsidence of basement from continental rifting in the Kita-Yamato Bank followed by the opening of the Ulleung Basin, and caused the onset of graben or half-graben structure bounded by large blocked syn-rift faults. Afterward no significant tectonic deformation exists, with the consequence that post-rift normal faults with small heave were formed and reactivated by the resultant forces such as tectonic subsidence, sediment loading and volcanic activity. The Cenozoic sediment layer has a maximum thickness of 1.0 s along the center of the graben or half-graben, which overlies the consolidated acoustic basement. Seismic units V and IV supposed to be syn-rift sedimentary rocks are deformed by both the volcanic activities and numerous basement-involved normal faults induced from extension. In the uppermost layer, slump scars resulted from the slope failure are recognized.

  • PDF

Geoacoustic Model of Coastal Bottom Strata at Jeongdongjin in the Korean Continental Margin of the East Sea (동해 한국대륙주변부 정동진 연안 지층의 지음향 모델)

  • Ryang, Woo-Hun;Kim, Seong-Pil;Kim, Dae-Choul;Hahn, Jooyoung
    • Journal of the Korean earth science society
    • /
    • v.37 no.4
    • /
    • pp.200-210
    • /
    • 2016
  • Geoacoustic modeling is used to predict sound transmission through submarine bottom layers of sedimentary strata and acoustic basement. This study reconstructed four geoacoustic models for sediments of 50 m thick at the Jeongdongjin area in the western continental margin of the East Sea. Bottom models were based on the data of the highresolution air-gun seismic and subbottom profiles (SBP) with sediment cores. P-wave speed was measured by the pulse transmission technique, and the resonance frequency of piezoelectric transducers was maintained at 1MHz. Measurements of 42 P-wave speeds and 41 attenuations were fulfilled in three core sediments. For actual modeling, the P-wave speeds of the models were compensated to in situ depth below the sea floor using the Hamilton method. These geoacoustic models of coastal bottom strata will be used for geoacoustic and underwater acoustic experiments reflecting vertical and lateral variability of geoacoustic properties in the Jeongdongjin area of the East Sea.