• Title/Summary/Keyword: 대기행렬 검지

Search Result 39, Processing Time 0.027 seconds

A Study of Relative Feeder-Cable Length and Vehicle Detection Length of Loop Detector (루프검지기의 휘더선길이와 차량검지길이의 관계 연구)

  • Oh, Young-Tae;Kim, Nam-Sun;Kim, Soo-Hee;Song, Ki-Hyuk
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.3 s.74
    • /
    • pp.85-94
    • /
    • 2004
  • Loop detection systems have been used in real-time signal control system to collect traffic information for estimating queue lengths. The queue length algorithm uses speed as a key variable estimated from occupancy time and average vehicle length. The measurement of average vehicle length is affected from the lengths of feeder cable, but their effects have not yet been evaluated. In this study, the variability of average vehicle length due to the lengths of feeder cable is assessed through a field study, and a practical guidelines is proposed. By applying this result, the operational performance of real-time signal control system could be improved.

Development of a Queue Length Based Optical Length Set Methodology Using Image Detectors (영상기반의 대기행렬길이를 이용한 최적주기 결정모형 개발)

  • 이철기;오영태
    • Journal of Korean Society of Transportation
    • /
    • v.19 no.4
    • /
    • pp.109-121
    • /
    • 2001
  • 본 연구는 공간적 정보를 수집할 수 있는 영상검지기를 이용하여 주어진 대기행렬길이를 기반으로 하는 최적주기 알고리즘을 개발함으로써 교통신호 제어에 대한 새로운 신호계획을 제공한다. 본 연구에서는 교통수요의 공간적인 정보를 획득하는 방안으로서 영상검지기 기반의 대기행렬길이를 사용한다. 전략적 측면에서 다양한 교통상태를 적용하였으며, 주요 결과는 아래와 같다. 1. 영상검지기 기반의 대기행렬길이 계산방안을 제안한다. 이 방법은 한 링크의 상류부와 하류부에 2대의 영상검지기를 설치하여 대기행렬길이를 산출하는 방안이다. 2. 신호제어 변수인 주기 계산모형이 개발된다. 이 방법 역시 영상검지기를 기반으로 하는 대기행렬길이를 사용한다.

  • PDF

Development of The Signal Control Algorithm Using Travel Time Informations of Sectional Detection Systems (구간검지체계의 통행시간정보를 이용한 신호제어 알고리즘 개발)

  • Jung, Young-Je;Kim, Young-Chan;Baek, Hyon-Su
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.8 s.86
    • /
    • pp.181-191
    • /
    • 2005
  • This study developed an algorithm for real-time signal control based on the detection system that can collect sectional travel time. The signal control variable is maximum queue length per cycle and this variable has a sectional meaning. When a individual vehicle pass through the detector, we can gather the vehicle ID and the detected time. Therefor we can compute the travel time of an individual vehicle between consecutive detectors. This travel time informations were bisected including the delay and not. We can compute queue withdrawing time using this bisection and the max queue length is computed using the deterministic delay model. The objective function of the real-time signal control aims equalization of queue length for all direction. The distribution of the cycle is made by queue length ratios.

Queue Detection using Fuzzy-Based Neural Network Model (퍼지기반 신경망모형을 이용한 대기행렬 검지)

  • KIM, Daehyon
    • Journal of Korean Society of Transportation
    • /
    • v.21 no.2
    • /
    • pp.63-70
    • /
    • 2003
  • Real-time information on vehicle queue at intersections is essential for optimal traffic signal control, which is substantial part of Intelligent Transport Systems (ITS). Computer vision is also potentially an important element in the foundation of integrated traffic surveillance and control systems. The objective of this research is to propose a method for detecting an exact queue lengths at signalized intersections using image processing techniques and a neural network model Fuzzy ARTMAP, which is a supervised and self-organizing system and claimed to be more powerful than many expert systems, genetic algorithms. and other neural network models like Backpropagation, is used for recognizing different patterns that come from complicated real scenes of a car park. The experiments have been done with the traffic scene images at intersections and the results show that the method proposed in the paper could be efficient for the noise, shadow, partial occlusion and perspective problems which are inevitable in the real world images.

Queue Length Based Real-Time Traffic Signal Control Methodology Using sectional Travel Time Information (구간통행시간 정보 기반의 대기행렬길이를 이용한 실시간 신호제어 모형 개발)

  • Lee, Minhyoung;Kim, Youngchan;Jeong, Youngje
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.13 no.1
    • /
    • pp.1-14
    • /
    • 2014
  • The expansion of the physical road in response to changes in social conditions and policy of the country has reached the limit. In order to alleviate congestion on the existing road to reconsider the effectiveness of this method should be asking. Currently, how to collect traffic information for management of the intersection is limited to point detection systems. Intelligent Transport Systems (ITS) was the traffic information collection system of point detection method such as through video and loop detector in the past. However, intelligent transportation systems of the next generation(C-ITS) has evolved rapidly in real time interval detection system of collecting various systems between the pedestrian, road, and car. Therefore, this study is designed to evaluate the development of an algorithm for queue length based real-time traffic signal control methodology. Four coordinates estimate on time-space diagram using the travel time each individual vehicle collected via the interval detector. Using the coordinate value estimated during the cycle for estimating the velocity of the shock wave the queue is created. Using the queue length is estimated, and determine the signal timing the total queue length is minimized at intersection. Therefore, in this study, it was confirmed that the calculation of the signal timing of the intersection queue is minimized.

Training Sample of Artificial Neural Networks for Predicting Signalized Intersection Queue Length (신호교차로 대기행렬 예측을 위한 인공신경망의 학습자료 구성분석)

  • 한종학;김성호;최병국
    • Journal of Korean Society of Transportation
    • /
    • v.18 no.4
    • /
    • pp.75-85
    • /
    • 2000
  • The Purpose of this study is to analyze wether the composition of training sample have a relation with the Predictive ability and the learning results of ANNs(Artificial Neural Networks) fur predicting one cycle ahead of the queue length(veh.) in a signalized intersection. In this study, ANNs\` training sample is classified into the assumption of two cases. The first is to utilize time-series(Per cycle) data of queue length which would be detected by one detector (loop or video) The second is to use time-space correlated data(such as: a upstream feed-in flow, a link travel time, a approach maximum stationary queue length, a departure volume) which would be detected by a integrative vehicle detection systems (loop detector, video detector, RFIDs) which would be installed between the upstream node(intersection) and downstream node. The major findings from this paper is In Daechi Intersection(GangNamGu, Seoul), in the case of ANNs\` training sample constructed by time-space correlated data between the upstream node(intersection) and downstream node, the pattern recognition ability of an interrupted traffic flow is better.

  • PDF

GPS 구간 검지 방식 기반의 Network 설계를 통한 교통정보 수집 및 제공

  • 김재민
    • Information and Communications Magazine
    • /
    • v.21 no.5
    • /
    • pp.70-79
    • /
    • 2004
  • 최적 경로 서비스를 제공하기 위해서는 구간 통행속도, 구간 통행시간, 회전 정보, 혼잡도 등과 같은 교통정보가 필요하다. 또한, 고객에게 신뢰성 있는 최적 경로를 제공하기 위해서는 실시간 교통정보 수집은 반드시 필요하며, 이러한 실시간 교통정보 수집 방법들에 대한 고찰과 검토가 선행되어야 한다. 기존의 교통정보 수집방법을 살펴보면 지점검지 방식의 경우, 수집되는 정보가 검지기 설치 지점의 지점속도(Spot Speed)이므로 해당 링크를 주행한 통행속도(통행시간)의 대표값으로 채택하기에는 다소 무리가 있으며 구간검지 방식의 경우, 일반적으로 급격한 교통류 변동에 따른 대기행렬 검지가 늦다는 단점이 있다.(중략)

Study on Queue Length Estimation using GPS Trajectory Data (GPS 데이터를 이용한 대기행렬길이 산출에 관한 연구)

  • Lee, Yong-Ju;Hwang, Jae-Seong;Lee, Choul-Ki
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.3
    • /
    • pp.45-51
    • /
    • 2016
  • Existing real-time signal control system was brought up typical problems which are supersaturated condition, point detection system and loop detection system. For that reason, the next generation signal control system of advanced form is required. Following thesis aimed at calculating queue length for the next generation signal control system to utilize basic parameter of signal control in crossing queue instead of the volume of real-time through traffic. Overflow saturated condition which was appeared as limit of existing system was focused to set-up range. Real-time location information of individual vehicle which is collected by GPS data. It converted into the coordinate to apply shock wave model with an linear equation that is extracted by regression model applied by a least square. Through the calculated queue length and link length by contrast, If queue length exceed the link, queue of downstream intersection is included as queue length that upstream queue vehicle is judeged as affecting downstream intersection. In result of operating correlation analysis among link travel time to judge confidence of extracted queue length, Both of links were shown over 0.9 values. It is appeared that both of links are highly correlated. Following research is significant using real-time data to calculate queue length and contributing to signal control system.

A Study on the Loop Detector System for Real-Time Traffic Adaptive Signal Control (실시간 교통신호제어를 위한 루프 검지기 체계 연구)

  • 이승환;이철기
    • Journal of Korean Society of Transportation
    • /
    • v.14 no.2
    • /
    • pp.59-88
    • /
    • 1996
  • This study has determined optimal type, and location of loop detector to measure accurately traffic condition influenced by traffic variation with real time. Optimal type of loop detector for through vehicle at stop bar was determined by confidences of occupancy period, and nonoccupancy period, and so appropriate detector type for application to real time traffic control system has been decided on special loop detector.

    shows types and winding methods of existing detector (num1) and special detector (num 7,8) determined. It is desired that optimal location of through loop detector should be installed within 50cm of stop bar owing to vehicle behavior. And optimal location of loop detector for left turn vehicle is determined by left turn vehicle behavior on stop bar. In the case of install only one loop, it is desirable that within 20cm of stop bar. Both the special loop (1.8 × 4.0m : num 1.7) and existing loop (1.8 × 1.8m : num1) would be suitable. A location standard aspects, while regarding as economic, existing loop (1.8 × 1.8m : num1) would be suitable. A location of the queue detector and the spillback prevention detector considering the link length, the pedestran crossing is be or not and the estimation range of queue. And if the link length is shorter than 250m, locations of queue detector and spillback protect detector must be considered in the respect of queue management.

  • PDF

The Development of Traffic Queue Length Estimation Algorithm Using the Occupancy Rates (점유율을 이용한 대기행렬길이 추정 알고리즘 개발)

  • Kang Jihoon;Oh Young-Tae;Kang Jeung-Sik
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.4 no.2 s.7
    • /
    • pp.13-22
    • /
    • 2005
  • The purpose of this research is how to estimate the traffic queue length in the signal intersection accurately. The current traffic queue length algorithm in COSMOS has been using the congestion diagram which comes from the speed of an average separated vehicle - using average vehicle length and the occupancy time from loop detectors. So some errors were occurred by the speed estimation method using average vehicle lengths. And Operators had been difficult to optimize some variables for measuring the traffic queue length estimation algorithm in COSMOS. Therefore the traffic queue length estimation algorithm on the basis of the relation between distances and occupancy rates from loop detectors was developed in this thesis. This thesis had the advantage of using occupancy rates which came out from loop detectors easily and no need to optimize some variables for the established algorithm in COSMOS. And the results of testing this algorithm in some sites which had installed COSMOS system showed better results than COSMOS system's results. But it was noted that further studies which carry it out in various sites and under various cases are necessary for applying to actual intersections.

  • PDF