• Title/Summary/Keyword: 대기모델

Search Result 1,695, Processing Time 0.029 seconds

Validation of the Long-Range Atmospheric Dispersion Model (장거리 대기 확산모델 검증)

  • Suh, Kyung-Suk;Kim, Eun-Han;Whang, Won-Tae;Jeong, Hyo-Joon;Han, Moon-Hee
    • Journal of Radiation Protection and Research
    • /
    • v.31 no.1
    • /
    • pp.9-15
    • /
    • 2006
  • A long-range atmospheric dispersion model named LADAS has been developed to understand the characteristics of the transport and diffusion of radioactive materials released into atmosphere. The developed numerical model for validation was compared with the results of the ETEX which is the long-range field tracer experiment. As a comparative study, the calculated concentration distributions agreed well in the case of the usage of the mixing heights calculated by the Richardson number than the usage of the constant mixing heights in LADAS model. Also, the calculated concentrations agreed with the time series of the measured ones at some sampling points.

Multi-modal Meteorological Data Fusion based on Self-supervised Learning for Graph (Self-supervised Graph Learning을 통한 멀티모달 기상관측 융합)

  • Hyeon-Ju Jeon;Jeon-Ho Kang;In-Hyuk Kwon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.589-591
    • /
    • 2023
  • 현재 수치예보 시스템은 항공기, 위성 등 다양한 센서에서 얻은 다종 관측 데이터를 동화하여 대기 상태를 추정하고 있지만, 관측변수 또는 물리량이 서로 다른 관측들을 처리하기 위한 계산 복잡도가 매우 높다. 본 연구에서 기존 시스템의 계산 효율성을 개선하여 관측을 평가하거나 전처리하는 데에 효율적으로 활용하기 위해, 각 관측의 특성을 고려한 자기 지도학습 방법을 통해 멀티모달 기상관측으로부터 실제 대기 상태를 추정하는 방법론을 제안하고자 한다. 비균질적으로 수집되는 멀티모달 기상관측 데이터를 융합하기 위해, (i) 기상관측의 heterogeneous network를 구축하여 개별 관측의 위상정보를 표현하고, (ii) pretext task 기반의 self-supervised learning을 바탕으로 개별 관측의 특성을 표현한다. (iii) Graph neural network 기반의 예측 모델을 통해 실제에 가까운 대기 상태를 추정한다. 제안하는 모델은 대규모 수치 시뮬레이션 시스템으로 수행되는 기존 기술의 한계점을 개선함으로써, 이상 관측 탐지, 관측의 편차 보정, 관측영향 평가 등 관측 전처리 기술로 활용할 수 있다.

Numerical Models for Atmospheric Diffusion Problems by Pseudospectral Method (1) - Atmospheric Diffusion Equations and Spectral Model - (의사스펙트로법에 의한 대기확산형상의 수치모델(1) - 대기확산방정식과 스펙트로모델 -)

  • 김선태;장영기
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.7 no.3
    • /
    • pp.189-196
    • /
    • 1991
  • In recent years spectral methods have been found to be a powerful tool for the numerical solution of hynamic differential equations. The main attraction of spectral method is accuracy even though it is generally difficult to implement and solve the complex problems using spectral method. We introduced diffusion equations describing the state of air pollution and solved by pseutospectral method in dimensionless form. The results were compared with both those of other numerical methods and analytical solutions. Comparing with finite difference method and finite element method, spectral method shows the highest accuracy for one dimension problem in this study. Also, the results of two dimensional diffusion problems show good agreement with analytical solutions.

  • PDF

A Study on Mesoscale Atmospheric Dispersion of Radioactive Particles Released from Nuclear Power Plants (원전부지 주변 국지순환에 따른 방사성 물질의 대기확산 특성 연구)

  • Lee, Gab-Bock;Lee, Myung-Chan;Song, Young-I1
    • Journal of Radiation Protection and Research
    • /
    • v.22 no.4
    • /
    • pp.273-288
    • /
    • 1997
  • A three dimensional sea-land breeze model and Lagrangian particle dispersion model have been employed for the study on the mesoscale atmospheric dispersion of radioactive materials released from Wolsung NPPs. In this study, atmospheric dispersion simulations are carried out under two synoptic weather conditions : the geostrophic flow is a weak northerly wind(CASE 1) and a strong northerly wind(CASE 2) on a clear day in spring. The results show that atmospheric dispersion is affected by sea-land breeze and the recirculation of particles by the change of wind direction between sea breeze and land breeze plays an important role in atmospheric concentration distribution of radoactive materials.

  • PDF

Modeling Heavy-tailed Behavior of 802.11b Wireless LAN Traffic (무선 랜 802.11b 트래픽의 두꺼운 꼬리분포 모델링)

  • Yamkhin, Dashdorj;Won, You-Jip
    • Journal of Digital Contents Society
    • /
    • v.10 no.2
    • /
    • pp.357-365
    • /
    • 2009
  • To effectively exploit the underlying network bandwidth while maximizing user perceivable QoS, mandatory to make proper estimation on packet loss and queuing delay of the underling network. This issue is further emphasized in wireless network environment where network bandwidth is scarce resource. In this work, we focus our effort on developing performance model for wireless network. We collect packet trace from actually wireless network environment. We find that packet count process and bandwidth process in wireless environment exhibits long range property. We extract key performance parameters of the underlying network traffic. We develop an analytical model for buffer overflow probability and waiting time. We obtain the tail probability of the queueing system using Fractional Brown Motion (FBM). We represent average queuing delay from queue length model. Through our study based upon empirical data, it is found that our performance model well represent the physical characteristics of the IEEE 802.11b network traffic.

  • PDF

Indoor Air Condition Measurement and Regression Analysis System Through Sensor Measurement Device and Gated Recurrent Unit (센서 측정기와 회로형 순환 유닛(GRU)을 이용한 실내 공기 품질 측정 및 추세 예측 시스템)

  • Ahn, Jaehyun;Shin, Dongil;Kim, Kyuho;Yang, Jihoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.9
    • /
    • pp.457-464
    • /
    • 2017
  • Indoor air quality analysis is conducted to understand abnormal atmospheric phenomena and the external factor affecting indoor air quality. By recording indoor air quality measurements periodically, we are able to observe patterns in air quality. However, it difficult to predict the number of potential parameters, set parameters for a given observation and find the coefficients. Moreover, the results are time-dependent. Thus to address these issues, we introduce a microchip capable of periodically recording indoor air quality and a model that estimates atmospheric changes based on time series data.

Blast Analysis of Concrete Structure using Arbitrary Lagrangian-Eulerian Technique (Arbitrary Lagrangian-Eulerian기법을 적용한 콘크리트 구조물의 폭발해석)

  • Yi, Na-Hyun;Kim, Sung-Bae;Nam, Jin-Won;Lee, Sung-Tae;Kim, Jang-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.269-272
    • /
    • 2008
  • Blast load, an impulsive load with extremely short time duration with very high pressure, is effected by ground and air condition, weight of charge, shape and location of structure. In this study, a blast dynamic analysis for the air-structural integrated model considering dynamic properties of materials and simulation of complex blast wave propagation by Arbitrary Lagrangian- Eulerian technique is suggested to perform an accurate blast analysis of concrete structures. For the verification of the proposed blast analysis method, which is the air-structure integrated model using ALE technique, the comparison of analysis and experimental results is performed. The verification confirms that the simulation of realistic behavior of RC wall structures is possible using ALE method. Also, the example cases which have been analyzed using this method show that the estimation to the structural failure criterion for blast load failure can be represented by energy absorbtion procedure.

  • PDF

A study on the rain attenuation prediction model using effective permittivity (실효유전율을 이용한 강우감쇠 예측 모델에 관한 연구)

  • 김혁제;조삼모
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.1
    • /
    • pp.52-59
    • /
    • 1998
  • We calculated the wave attenuation due to rain using the effective permittivity of the air with raindrops. The effective permittivity depends on the complex permittivity of rain drop and the fractional volume occupied by the raindrops. We calculate the complex permittivity of rain drop and the raindrops' volume using Marshall-Palmer Rain drop size distribution. The rain attenuation calculated by effective permittivity is compared with the results of ITU rain attenuation model, and the two rain attenuation models have a very close agreement. The effetive permittivity model underestimates the rain attenuation under 50 GHz, and overestimate at the frequencies under 50 GHz copmpared with the ITU model.

  • PDF

Development of Exponential Model of Korea for Improved Altitude Estimation Performance of High-Altitude Target at Radar System (레이더에서 고고도 표적물의 고도 예측 성능 향상을 위한 한국형 지수 모델 개발에 관한 연구)

  • Moon, Hyun-Wook;Jeon, Min-Hyun;Kim, Woo-Joong;Oh, Seong-Keun;Lee, Jong-Hyun;Kwon, Se-Woong;Yoon, Young-Joong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.7
    • /
    • pp.831-839
    • /
    • 2012
  • In this paper, an exponential model of Korea is proposed to minimize an altitude-error of high-altitude target due to atmosphere refraction at radar system. The relation between surface refractivity and refractivity gradient, which is extracted using the least square fit from the measured data at 7 weather stations, is applied to the exponential model. And in order to verify the proposed model, the altitude-errors for a standard atmosphere, a CRPL(Central Radio Propagation Lab.) exponential model, the proposed model are extracted and analyzed using a ray tracing. As a result, the proposed model can improve the altitude estimation performance of radar compared to conventional atmosphere refractive index models.