• Title/Summary/Keyword: 대기과학

Search Result 1,638, Processing Time 0.036 seconds

A Study on Improving Scheme and An Investigation into the Actual Condition about Components of Physical Distribution System (물류시스템 구성요인에 관한 실태분석과 개선방안에 관한 연구)

  • Kim, Kyeong-Cho
    • Journal of Distribution Science
    • /
    • v.7 no.4
    • /
    • pp.47-56
    • /
    • 2009
  • The purpose of this study is to present an alternative improving the efficient and reasonable of the physical distribution system management is influenced by many factors. Therefore, the study depends on the documentary method and survey method to achieve the purpose of this study. The major components of a physical distribution system are refers to as elements, include warehouse·storage system, transportation system, inventory system, physical distribution information system. The factors used in this study are ① factor of product(quality·A/S·added value of product·adaption of product·technical competitive power to other enterprises), ② factor of market(market channel·kinds of customer·physical distribution share), ③ factor of warehouse·storage(warehouse design·size·direction·storage ability·warehouse quality), ④ factor of transportation(promptness·reliability·responsibility·kinds of transportation·cooperation united transportation system·national transportation network), ⑤ factor of packaging (packaging design·material·educating program·pollution degree measure program), ⑥ factor of inventory(ordinary inventory criterion·consistence for inventories record), ⑦ factor of unloaded(unloaded machine·having machine ratio), ⑧ factor of information system (physical distribution quantity analysis·usable computer part), ⑨ factor of physical distribution cost(sales ratio to product) ⑩ factor of physical distribution system(physical distribution center etc). The implication of this study can be summarized as follows: ① In firms that have not adopted a systems integrative approach, physical distribution is a fragmented and often uncoordinated set of activities spread throughout various functions with function having its own set of priorities and measurements. ② The physical distribution is recognized as more an important strategic factor than a simple cost reduction factor, ③ It can be used a strategic competition tool to enterprise.

  • PDF

A study of SCM strategic plan: Focusing on the case of LG electronics (공급사슬 관리 구축전략에 관한 연구: LG전자 사례 중심으로)

  • Lee, Gi-Wan;Lee, Sang-Youn
    • Journal of Distribution Science
    • /
    • v.9 no.3
    • /
    • pp.83-94
    • /
    • 2011
  • Most domestic companies, with the exclusion of major firms, are reluctant to implement a supply chain management (SCM) network into their operations. Most small- and medium-sized enterprises are not even aware of SCM. Due to the inherent total-systems efficiency of SCM, it coordinates domestic manufacturers, subcontractors, distributors, and physical distributors and cuts down on cost of inventory control, as well as demand management. Furthermore, a lack of SCM causes a decrease in competitiveness for domestic companies. The reason lies in the fundamentality of SCM, which is the characteristic of information sharing, process innovation throughout SCM, and the vast range of problems the SCM management tool is able to address. This study suggests the contemplation and reformation of the current SCM situation by analyzing the SCM strategic plan, discourses and logical discussions on the topic, and a successful case for adapting SCM; hence, the study plans to productively "process" SCM. First, it is necessary to contemplate the theoretical background of SCM before discussing how to successfully process SCM. I will describe the concept and background of SCM in Chapter 2, with a definition of SCM, types of SCM promotional activities, fields of SCM, necessity of applying SCM, and the effects of SCM. All of the defects in currently processing SCM will be introduced in Chapter 3. Discussion items include the following: the Bullwhip Effect; the breakdown in supply chain and sales networks due to e-business; the issue that even though the key to a successful SCM is cooperation between the production and distribution company, during the process of SCM, the companies, many times, put their profits first, resulting in a possible defect in demands estimation. Furthermore, the problems of processing SCM in a domestic distribution-production company concern Information Technology; for example, the new system introduced to the company is not compatible with the pre-existing document architecture. Second, for effective management, distribution and production companies should cooperate and enhance their partnership in the aspect of the corporation; however, in reality, this seldom occurs. Third, in the aspect of the work process, introducing SCM could provoke corporations during the integration of the distribution-production process. Fourth, to increase the achievement of the SCM strategy process, they need to set up a cross-functional team; however, many times, business partners lack the cooperation and business-information sharing tools necessary to effect the transition to SCM. Chapter 4 will address an SCM strategic plan and a case study of LG Electronics. The purpose of the strategic plan, strategic plans for types of business, adopting SCM in a distribution company, and the global supply chain process of LG Electronics will be introduced. The conclusion of the study is located in Chapter 5, which addresses the issue of the fierce competition that companies currently face in the global market environment and their increased investment in SCM, in order to better cope with short product life cycle and high customer expectations. The SCM management system has evolved through the adaptation of improved information, communication, and transportation technologies; now, it demands the utilization of various strategic resources. The introduction of SCM provides benefits to the management of a network of interconnected businesses by securing customer loyalty with cost and time savings, derived through the consolidation of many distribution systems; additionally, SCM helps enterprises form a wide range of marketing strategies. Thus, we could conclude that not only the distributors but all types of businesses should adopt the systems approach to supply chain strategies. SCM deals with the basic stream of distribution and increases the value of a company by replacing physical distribution with information. By the company obtaining and sharing ready information, it is able to create customer satisfaction at the end point of delivery to the consumer.

  • PDF

Effects of Artificial Acid Precipitation on Forest Soil Buffer Capacities (인공산성우(人工酸性雨)가 삼림토양(森林土壤)의 완충능(緩衝能)에 미치는 영향(影響))

  • Min, Ell Sik;Lee, Soo Wook
    • Journal of Korean Society of Forest Science
    • /
    • v.79 no.4
    • /
    • pp.376-387
    • /
    • 1990
  • A research effort has been made to determine soil buffer capacity in forest soils nearby urban and industrialized regions. Buffer capacities of soils from four regions were measured by different pH levels of artificial acid precipitation. The following conclusions have been drawn in response to the overall research objectives. Soil Suffer capacity was the highest in Kangwondo followed by Uisan, Yeochon and Seoul when simulated acid precipitation were treated at the level of pH 3.0-5.7. With the acid precipitation treatment below pH 2.0 level, however, the capacity dropped seriously with no significant differences between the regions. In Kangwondo region soils weathered from granite and limestone showed significant differences in the buffer capacities. Soil collected in Seoul and Ulsean revealed that the capacities tended to increase with the distance from the pollution sources when treated at pH 3.0, 4.5 and 5.7 level of acid precipitation. The major mechanism of soil buffer observed during simulated acid precipitation experiment was canon exchange for Kangwondo forest soils. In Seoul region canon exchange also played an important role in soil buffering under artificial acid precipitation between 3.0 and 5.7 pH levels, yet under pH 2.0 level aluminum and silicate hydrolysis. In Ulsan canon exchange was a msjor determinant for the buffer capacity above pH 4.5 level, between pH 3.0-4.5 aluminum hydrolysis and below pH 3.0 aluminum and silicate hydrolysis. In Yeochon silicate hydrolysis led buffer capacity above pH 4.5 and below pH 4.5 aluminum hydrolysis.

  • PDF

Estimation of the Convective Boundary Layer Height Using a UHF Radar (UHF 레이더를 이용한 대류 경계층 고도의 추정)

  • 허복행;김경익
    • Korean Journal of Remote Sensing
    • /
    • v.17 no.1
    • /
    • pp.1-14
    • /
    • 2001
  • The enhancement of the refractive index structure parameter $C_n^2$ often occurs where vertical gradients of virtual potential temperature ${\theta}_v$ and mixing ratio q have their maximum values. The $C_n^2$ can be a very useful parameter for estimating the convective boundary layer(CBL) height. The behavior of $C_n^2$ peaks, often used to locate the height of mixed layer, was investigated in the present study. In addition, a new method to determine the CBL height objectively using both $C_n^2$ and vertical air velocity variance ${\sigma}_w$ data of UHF radar was also suggested. The present analysis showed that the $C_n^2$ peaks in the backscatter intensity profiles often occurred not only at the top of the CBL but also at the top of a residual layer or at a cloud layer. The $C_n^2$ peaks corresponding to the CBL heights were slightly lower than the CBL heights derived from rawinsonde sounding data when vertical mixing owing to weak solar heating was not significant and the height of strong vertical ${\theta}_v$ gradients were not consistent with that of strong vertical q gradients. However, the $C_n^2$ peaks corresponding to the CBL heights were in good agreement with the rawinsonde-estimated CBL hegiths when vertical mixing owing to solar heating was significant and the vertical gradient of both ${\theta}_v$ and q in the entrainment zone was very strong. The maximum backscatter intensity method, which determines the height of $C_n^2$ peak as the CBL height, correctly estimated the CBL height when the $C_n^2$ profile had single peak, but this method erroneously estimated the CBL height when there was a residual layer or a cloud layer over the top of the CBL. The new method distinguished when there the CBL height from the peak due a cloud layer or a residual layer using both $C_n^2$ and ${\sigma}_w$ data, and correctly estimated the CBL height. As for estimation of diurnal variation of the CBL height, the new method backscatter intensity method even if the vertical profile of backscatter intensity had two peaks from the CBL height and a residual layer or a cloud layer.

Preparation of Halloysite-Based Tubular Media for Enhanced Methylene Blue Adsorption (메틸렌 블루 흡착능 향상을 위한 할로이사이트 기반 튜브형 담체 연구)

  • Jeon, Junyeong;Cho, Yebin;Kim, Jongwook;Shin, Seung Gu;Jeon, Jong-Rok;Lee, Younki
    • Clean Technology
    • /
    • v.27 no.4
    • /
    • pp.359-366
    • /
    • 2021
  • Halloysite nanotubes (HNTs), the multiwalled clay mineral with the composition of Al2Si2O5(OH)4·nH2O, have been highlighted as a low-cost adsorbent for the removal of dyes from wastewater. Although a powder of halloysite presents a high specific surface area, forming media are significantly considered due to sludge-clogging induced by the water-bound agglomeration. However, higher firing temperature to achieve the structural durability of the media and lower utilization rate due to longer penetration depth into the media act as hurdles to increase the dye-adsorption capacity. In this work, the retention of the adsorption capacity of halloysite was evaluated with methylene blue solution after the heat treatment at 750 ℃. In order to improve the utilization rate, tubular media were fabricated by extrusion. The images taken by transmission electron microscopy show that HNTs present excellent structural stability under heat treatment. The HNTs also provide superb capacity retention for MB adsorption (93%, 18.5 mg g-1), while the diatomite and Magnesol® XL show 22% (7.65 mg g-1) and 6% (11.7 mg g-1), respectively. Additionally, compositing with lignin enhances adsorption capacity, and the heat treatment under the hydrogen atmosphere accelerates the adsorption in the early stage. Compared to the rod-type, the tubular halloysite media rapidly increases methylene blue adsorption capacity.

A study on the effect of startup entrepreneurs' experience of industry-university cooperation through incubator organizations on organizational learning capability and innovation performance (벤처기업 창업가의 배태조직과 산학협력 경험이 조직학습역량과 혁신성과에 미치는 영향)

  • Kim, Deokyong;Bae, Sung Joo
    • Journal of Technology Innovation
    • /
    • v.30 no.2
    • /
    • pp.29-58
    • /
    • 2022
  • Startups lack resources and manpower to build internal capabilities to strengthen market competitiveness; external cooperation such as joint research and networking plays is important. In this study, we analyzed the effect of startups' industry-university cooperation on organizational learning capability and innovation performance. Empirical results demonstrate the mechanism by which government R&D investment strengthens organizational learning capability and creates innovative results by promoting cooperation between startups and universities. First, industry-university cooperation strengthened organizational learning capability. An empirical analysis shows that startups increase internal capabilities through external cooperation. Second, startups' organizational learning capability had a significant effect on innovation performance. We analyze how organizations with high learning capabilities positively develop corporate innovation performance by having a culture of discovery and sharing new ideas. Finally, industry-university cooperation had different effects on organizational learning capability and innovation performance according to the previous experiences of startup founders. In particular, small- and medium-sized (startup) businesses and individual-based experience groups positively affected the creation of organizational learning capabilities and innovation performance through industry-university cooperation. Small- and medium-sized businesses and individual founders have a relatively small cooperative network with the outside world compared to founders of large companies, universities, and research institutes; therefore, they strengthen organizational learning capabilities through cooperation with universities. This study demonstrates that government should create policy inducements for cooperation with universities to maximize the R&D performance of startups. Criticism exists that lending support to startups and universities will hinder innovation performance; nevertheless, government investment plays a role in expanding intangible resources such as accumulating technologies, fostering high-quality human resources, and strengthening innovation networks. Therefore, the government should appropriately utilize the its authority to strengthen investment strategies for startup growth.

Current status and future of insect smart factory farm using ICT technology (ICT기술을 활용한 곤충스마트팩토리팜의 현황과 미래)

  • Seok, Young-Seek
    • Food Science and Industry
    • /
    • v.55 no.2
    • /
    • pp.188-202
    • /
    • 2022
  • In the insect industry, as the scope of application of insects is expanded from pet insects and natural enemies to feed, edible and medicinal insects, the demand for quality control of insect raw materials is increasing, and interest in securing the safety of insect products is increasing. In the process of expanding the industrial scale, controlling the temperature and humidity and air quality in the insect breeding room and preventing the spread of pathogens and other pollutants are important success factors. It requires a controlled environment under the operating system. European commercial insect breeding facilities have attracted considerable investor interest, and insect companies are building large-scale production facilities, which became possible after the EU approved the use of insect protein as feedstock for fish farming in July 2017. Other fields, such as food and medicine, have also accelerated the application of cutting-edge technology. In the future, the global insect industry will purchase eggs or small larvae from suppliers and a system that focuses on the larval fattening, i.e., production raw material, until the insects mature, and a system that handles the entire production process from egg laying, harvesting, and initial pre-treatment of larvae., increasingly subdivided into large-scale production systems that cover all stages of insect larvae production and further processing steps such as milling, fat removal and protein or fat fractionation. In Korea, research and development of insect smart factory farms using artificial intelligence and ICT is accelerating, so insects can be used as carbon-free materials in secondary industries such as natural plastics or natural molding materials as well as existing feed and food. A Korean-style customized breeding system for shortening the breeding period or enhancing functionality is expected to be developed soon.

Ecological Characteristics and Changes of Quercus mongolica Community in Namsan (Mt.), Seoul (서울시 남산 신갈나무림 생태계 특성과 변화 연구)

  • Han, Bong-Ho;Park, Seok-Cheol;Kim, Jong-Yup;Kwak, Jeong-In
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.50 no.2
    • /
    • pp.41-63
    • /
    • 2022
  • The purpose of this study is to secure objective and precise data through ecosystem monitoring, to reveal ecological characteristics through comparison and analysis with past survey data, and to accumulate basic data for diagnosing the current situation and predicting changes in the ecosystem. The target site is the 'Quercus mongolica forest on the Buksa-myeon of Namsan', which was designated as an Ecological Landscape Conservation Area (ELCA) of Seoul in July 2006. The research contents are analysis of soil environment change (1986~2016), change of actual vegetation (1978~2016), and change of plant community structure (1994~2016). A total of 8 fixed surveys (400~1,200m2) were established in 1994 and 2000. Analysis items are importance value, species and population, and Shannon's species diversity. The soil environment of Namsan is acidic (pH 4.40 in 2016), which is expected to have a negative impact on tree growth and vegetation structure due to its low capacity for exchangeable cations. Quercus mongolica forest in Namsan is mainly distributed on the northern slopes. The actual vegetation area changed from 49.4% in 1978 → 80.7% in 1986 → 82.4% in 2000 → 88.3% in 2005 → 88.3% in 2009 → 70.3% in 2016. In 2016, the forest decreased by 18% compared to 2009. While there was increased growth of Quercus mongolica in the tree layer from 2009 to 2016, the overall decline in vegetation area was due to logging and fumigation management following the spread of oak wilt in 2012. As for the changes in the plant community structure, Quercus mongolica of the tree layer was damaged by oak wilt, and the potential vegetation that can form the next generation was ambiguous. In the subtree layer, the force of urbanization tree species such as Styrax japonicus, Sorbus alnifolia, and Acer palmatum. was maintained or increased. In the shrub layer, the number of trees and species increased significantly due to the open tree crown, and accordingly, the species diversity of Shannon for woody plants also increased. In Quercus mongolica forest of Namsan, various ecological changes are occurring due to the effects of urban environments such as air pollution and acid rain, the limitation of Quercus mongolica pure forest due to oak wilt, and the introduction of exotic species, thus, it is necessary to establish a management plan through continuous monitoring.

The Induction of ROS-dependent Autophagy by Particulate Matter 2.5 and Hydrogen Peroxide in Human Lung Epithelial A549 Cells (미세먼지와 산화적 스트레스에 의한 인간 폐 상피 A549 세포에의 ROS 의존적 자가포식 유도)

  • Park, Beom Su;Kim, Da Hye;Hwangbo, Hyun;Lee, Hyesook;Hong, Su Hyun;Cheong, Jaehun;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.32 no.4
    • /
    • pp.310-317
    • /
    • 2022
  • Recently, interest in the harmful factors of particulate matter (PM), a major component of air pollution, has been increasing. In particular, PM2.5 with a diameter of less than 2.5 ㎛ is well known to induce oxidative stress accompanied by autophagy in human lung epithelial cells. However, studies on whether PM2.5 increases autophagy under oxidative stress and whether this process is reactive oxygen species (ROS)-dependent are insufficient. Therefore, in this study, we investigated whether PM2.5 promotes autophagy through the generation of ROS in human alveolar epithelial A594 cells. According to our results, cells co-treated with PM2.5 and hydrogen peroxide (H2O2) showed a lower cell viability than cells treated with each alone, which was associated with increased total and mitochondrial ROS production. The co-treatment of PM2.5 and H2O2 also increased autophagy induction, which was confirmed through Cyto-ID staining, and the expression of autophagy biomarker proteins increased. However, when ROS generation was artificially blocked by N-acetyl-L-cysteine pretreatment, the reduction in cell viability and induction of autophagy by PM2.5 and H2O2 co-treatment were markedly attenuated. Therefore, the present results suggest that PM2.5-induced ROS generation may play a critical role in autophagy induction in A549 cells.

Studies on Changes in the Hydrography and Circulation of the Deep East Sea (Japan Sea) in a Changing Climate: Status and Prospectus (기후변화에 따른 동해 심층 해수의 물리적 특성 및 순환 변화 연구 : 현황과 전망)

  • HOJUN LEE;SUNGHYUN NAM
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.28 no.1
    • /
    • pp.1-18
    • /
    • 2023
  • The East Sea, one of the regions where the most rapid warming is occurring, is known to have important implications for the response of the ocean to future climate changes because it not only reacts sensitively to climate change but also has a much shorter turnover time (hundreds of years) than the ocean (thousands of years). However, the processes underlying changes in seawater characteristics at the sea's deep and abyssal layers, and meridional overturning circulation have recently been examined only after international cooperative observation programs for the entire sea allowed in-situ data in a necessary resolution and accuracy along with recent improvement in numerical modeling. In this review, previous studies on the physical characteristics of seawater at deeper parts of the East Sea, and meridional overturning circulation are summarized to identify any remaining issues. The seawater below a depth of several hundreds of meters in the East Sea has been identified as the Japan Sea Proper Water (East Sea Proper Water) due to its homogeneous physical properties of a water temperature below 1℃ and practical salinity values ranging from 34.0 to 34.1. However, vertically high-resolution salinity and dissolved oxygen observations since the 1990s enabled us to separate the water into at least three different water masses (central water, CW; deep water, DW; bottom water, BW). Recent studies have shown that the physical characteristics and boundaries between the three water masses are not constant over time, but have significantly varied over the last few decades in association with time-varying water formation processes, such as convection processes (deep slope convection and open-ocean deep convection) that are linked to the re-circulation of the Tsushima Warm Current, ocean-atmosphere heat and freshwater exchanges, and sea-ice formation in the northern part of the East Sea. The CW, DW, and BW were found to be transported horizontally from the Japan Basin to the Ulleung Basin, from the Ulleung Basin to the Yamato Basin, and from the Yamato Basin to the Japan Basin, respectively, rotating counterclockwise with a shallow depth on the right of its path (consistent with the bottom topographic control of fluid in a rotating Earth). This horizontal deep circulation is a part of the sea's meridional overturning circulation that has undergone changes in the path and intensity. Yet, the linkages between upper and deeper circulation and between the horizontal and meridional overturning circulation are not well understood. Through this review, the remaining issues to be addressed in the future were identified. These issues included a connection between the changing properties of CW, DW, and BW, and their horizontal and overturning circulations; the linkage of deep and abyssal circulations to the upper circulation, including upper water transport from and into the Western Pacific Ocean; and processes underlying the temporal variability in the path and intensity of CW, DW, and BW.