• Title/Summary/Keyword: 대규모 입자영상유속계

Search Result 2, Processing Time 0.025 seconds

Outlines of Large Scale Particle Image Velocimetry (LSPIV) and its Applications (LSPIV(Large Scale Particle Image Velocimetry)기법의 개요 및 응용분야)

  • Yoon Byungman;Noh Youngshin
    • Journal of the Korean Society of Visualization
    • /
    • v.1 no.2
    • /
    • pp.13-16
    • /
    • 2003
  • LSPIV(Large Scale Particle Image Velocimetry) is widely used in the field of civil and environmental engineering. General aspects of LSPIV are introduced and several applications are introduced in this paper. The difference of LSPIV from the conventional PIV techniques is not to use models for experiments but to use the flow fields in nature. For LSPIV a converting process for the captured images is necessary.

  • PDF

An Experimental Investigation on Flow Field in a Pipe with Sinusoidally Wavy Surface by PIV (PIV를 이용한 3차원 파형관 내부 유동장의 실험적 연구)

  • 김성균
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.4
    • /
    • pp.368-373
    • /
    • 2004
  • A flow field in a passage with periodically converging-diverging cross-section is investigated experimentally by PIV measurement. A tube with a sinusoidally wavy cross section is one of several devices employed for enhancing the heat and mass transfer efficiency due to turbulence promotion and unsteady vortical motion. While the numerical flow visualization results have been limited to the fully developed cases, existing experimental results of this flow were simple qualitative ones by smoke or dye streak test. Therefore, the main purpose of this study is to produce quantitative flow data for fully developed and transient flow regime by the Correlation Based Correction PIV (CBC PIV) and to conjecture the analogy between flow characteristics and heat transfer enhancement with low pumping power. Another purpose of this paper is to examine the onset position of the transition and the global mixing, which results in transfer enhancement. At Re=2000, evidences of the global mixing are captured at 2.5 wavy module through the variation of RMS values and instantaneous velocity plot.