• 제목/요약/키워드: 대규모 언어모델 인공지능

검색결과 19건 처리시간 0.031초

KE-T5: 한국어-영어 대용량 텍스트를 활용한 이중언어 사전학습기반 대형 언어모델 구축 (Construction of bilingually pre-trained language model from large-scaled Korean and English corpus)

  • 신사임;김산;서현태
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.419-422
    • /
    • 2021
  • 본 논문은 한국어와 영어 코퍼스 93GB를 활용하여 구축한 대형 사전학습기반 언어모델인 KE-T5를 소개한다. KE-T5는 한국어와 영어 어휘 64,000개를 포함하는 대규모의 언어모델로 다양한 한국어처리와 한국어와 영어를 모두 포함하는 번역 등의 복합언어 태스크에서도 높은 성능을 기대할 수 있다. KE-T5의 활용은 대규모의 언어모델을 기반으로 영어 수준의 복잡한 언어처리 태스크에 대한 연구들을 본격적으로 시작할 수 있는 기반을 마련하였다.

  • PDF

복수 대규모 언어 모델에 기반한 제어 가능형 데이터 증강 프레임워크 (Controllable data augmentation framework based on multiple large-scale language models)

  • 강현석;남궁혁;정지수;정상근
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.3-8
    • /
    • 2023
  • 데이터 증강은 인공지능 모델의 학습에서 필요한 데이터의 양이 적거나 편향되어 있는 경우, 이를 보완하여 모델의 성능을 높이는 데 도움이 된다. 이미지와는 달리 자연어의 데이터 증강은 문맥이나 문법적 구조와 같은 특징을 고려해야 하기 때문에, 데이터 증강에 많은 인적자원이 소비된다. 본 연구에서는 복수의 대규모 언어 모델을 사용하여 입력 문장과 제어 조건으로 프롬프트를 구성하는 데 최소한의 인적 자원을 활용한 의미적으로 유사한 문장을 생성하는 방법을 제안한다. 또한, 대규모 언어 모델을 단독으로 사용하는 것만이 아닌 병렬 및 순차적 구조로 구성하여 데이터 증강의 효과를 높이는 방법을 제안한다. 대규모 언어 모델로 생성된 데이터의 유효성을 검증하기 위해 동일한 개수의 원본 훈련 데이터와 증강된 데이터를 한국어 모델인 KcBERT로 다중 클래스 분류를 수행하였을 때의 성능을 비교하였다. 다중 대규모 언어 모델을 사용하여 데이터 증강을 수행하였을 때, 모델의 구조와 관계없이 증강된 데이터는 원본 데이터만을 사용하였을 때보다 높거나 그에 준하는 정확도를 보였다. 병렬 구조의 다중 대규모 언어 모델을 사용하여 400개의 원본 데이터를 증강하였을 때에는, 원본 데이터의 최고 성능인 0.997과 0.017의 성능 차이를 보이며 거의 유사한 학습 효과를 낼 수 있음을 보였다.

  • PDF

인공지능의 서사 지능 탐구 : 새로운 서사 생태계와 호모 나랜스의 진화 (Exploring Narrative Intelligence in AI: Implications for the Evolution of Homo narrans)

  • 권호창
    • 트랜스-
    • /
    • 제16권
    • /
    • pp.107-133
    • /
    • 2024
  • 내러티브는 인간의 인지와 사회 문화의 기본이며 개인과 사회가 의미를 구성하고 경험을 공유하며 문화적, 도덕적 가치를 전달하는 주요 수단으로 사용된다. 인간의 사고와 행동을 모방하려는 인공지능 분야에서는 오랫동안 스토리 생성과 스토리 이해에 관해서 연구해 왔으며, 오늘날 대규모 언어 모델은 발전된 자연어 처리 기술을 바탕으로 괄목할 만한 서사적 능력을 보여주고 있다. 이런 상황은 다양한 변화와 새로운 문제를 제기하지만 이에 대한 포괄적인 논의를 찾아보기는 어렵다. 본 논문은 인간과 AI의 서사 지능의 교차점과 상호작용을 살펴봄으로써 현재의 상태와 미래의 변화에 대한 전체적인 조망을 제공하는 것을 목표로 한다. 먼저 호모 나랜스라는 용어로 대변되는 인간과 내러티브의 본질적 관계에 관한 다학제적 연구를 살펴보고, 인공지능 분야에서 내러티브에 관한 연구가 어떻게 이루어져 왔는지를 역사적으로 살펴본다. 그리고 오늘날 대규모 언어 모델이 보여주는 서사 지능의 가능성과 한계를 살펴보고, 서사 지능을 갖춘 AI가 갖는 함의를 파악하기 위한 세 가지 철학적 과제를 제시한다.

대규모 언어모델 활용을 통한 통계자료 처리 및 온라인 가격지표 개발 방법론 연구 (Utilizing Large Language Models(LLM) for Efficient Online Price Index Development and Statistical Data Processing)

  • 오교중;최호진;안현각;김일구;차원석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.101-104
    • /
    • 2023
  • 본 연구는 현대 사회에서 빅데이터의 중요성이 강조되는 가운데, 온라인 시장의 확장과 소비자들의 다양한 소비 행태 변화를 반영한 가격지표 개발을 목표로 한다. 통계청의 기존 통계조사 방법론에 대한 한계를 극복하고, 온라인 쇼핑몰 데이터에서 필요한 정보를 추출하고 가공하기 위해 대규모 언어 모델(LLM)을 활용한 인공지능 기술을 적용해보고자 한다. 초기 연구 결과로 공개 Polyglot을 활용하여 비정형 자료 처리와 품목분류에 응용해 보았으며, 제한된 학습 데이터를 사용하여도 높은 정확도의 처리 결과를 얻을 수 있었으며, 현재는 적용 품목을 확장하여 더욱 다양한 품목에 방법론을 적용하는 연구를 진행 중이다.

  • PDF

대규모 언어 모델(LLM) 기반의 파이썬 입문자를 위한 코딩 도우미 (Coding Helper for Python Beginners based on the Large Language Model(LLM))

  • 이세훈;최정빈;백영태;윤선호
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2023년도 제68차 하계학술대회논문집 31권2호
    • /
    • pp.389-390
    • /
    • 2023
  • 본 논문에서는 파이썬 코딩 플랫폼에서의 LLM(Large Language Models)을 로직 및 문법 에러 확인, 디버깅 도구로 활용할 수 있는 시스템을 제안한다. 이 시스템은 사용자가 코딩 플랫폼에서 작성한 파이썬 코드와 함께 발생한 에러 문구 및 프롬프트를 LLM 모델에 입력함으로써 로직(문법) 에러를 식별하고 디버깅에 활용할 수 있다. 특히, 입문자를 고려해 프롬프트를 제한하여 사용의 편의성을 높인다. 이를 통해 파이썬 코딩 교육에서 입문자들의 학습 과정을 원활하게 진행할 수 있으며, 파이썬 코딩에 대한 진입 장벽을 낮출 수 있다.

  • PDF

Seq2SPARQL: 신경망 기계 번역을 사용한 지식 베이스 질의 언어 자동 생성 (Seq2SPARQL: Automatic Generation of Knowledge base Query Language using Neural Machine Translation)

  • 홍동균;심홍매;김광민
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 추계학술발표대회
    • /
    • pp.898-900
    • /
    • 2019
  • SPARQL(SPARQL Protocol and RDF Query Language)은 지식 베이스를 위한 표준 시맨틱 질의 언어이다. 최근 인공지능 분야에서 지식 베이스는 질의 응답 시스템, 시맨틱 검색 등 그 활용성이 커지고 있다. 그러나 SPARQL 과 같은 질의 언어를 사용하기 위해서는 질의 언어의 문법을 이해하기 때문에, 일반 사용자의 경우에는 그 활용성이 제한될 수밖에 없다. 이에 본 논문은 신경망 기반 기계 번역 기술을 활용하여 자연어 질의로부터 SPARQL 을 생성하는 방법을 제안한다. 우리는 제안하는 방법을 대규모 공개 지식 베이스인 Wikidata 를 사용해 검증하였다. 우리는 실험에서 사용할 Wikidata 에 존재하는 영화 지식을 묻는 자연어 질의-SPARQL 질의 쌍 20,000 건을 생성하였고, 여러 sequence-to-sequence 모델을 비교한 실험에서 합성곱 신경망 기반의 모델이 BLEU 96.8%의 가장 좋은 결과를 얻음을 보였다.

인공지능을 이용한 웹기반 건축현장 안전관리 플랫폼 개발 (Development of Web-based Construction-Site-Safety-Management Platform Using Artificial Intelligence)

  • 김시욱;김은석;김치경
    • 한국전산구조공학회논문집
    • /
    • 제37권2호
    • /
    • pp.77-84
    • /
    • 2024
  • 4차 산업혁명 시대에 건설산업은 전통적인 업무 방식에서 디지털 프로세스로 전환하고 있다. 특히, 건설산업의 특성으로 인해 업무 절차의 변경에는 어려움이 따르며, 점진적인 디지털 전환 및 시행착오가 발생하고 있다. 건설현장의 안전관리 분야도 역시 이 흐름을 따라 모든 데이터의 디지털화와 자동화를 목표로 연구 및 시도가 활발히 진행되고 있다. 그러나 최근의 통계에 따르면, 건설업 안전사고는 계속해서 발생하고 있으며, 안전사고 사망자 수도 줄지 않고 있다. 본 연구는 이러한 문제를 해결하기 위해 건설공사 안전관리 종합정보망의 빅데이터를 대규모 언어모델 인공지능을 통해 분석하였다. 분석된 결과는 실시간으로 업데이트가 가능한 상세설계모델로부터 위치정보와 공간적 특성을 반영하여 안전관리가 필요한 현장모델링에 정보를 맵핑하였다. 해당 연구를 통해 건설현장 안전관리 데이터의 디지털화를 통한 시설물 및 근로자의 안전을 강화하고, 건설사고 예방 및 효과적인 교육 지시를 위한 빅데이터 기반 안전관리 플랫폼 개발을 목표로 한다.

생성형 대규모 언어 모델과 프롬프트 엔지니어링을 통한 한국어 텍스트 기반 정보 추출 데이터셋 구축 방법 (A Study on Dataset Generation Method for Korean Language Information Extraction from Generative Large Language Model and Prompt Engineering)

  • 정영상;지승현;권다롱새
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제12권11호
    • /
    • pp.481-492
    • /
    • 2023
  • 본 연구는 생성형 대규모 언어 모델을 활용하여 텍스트에서 정보를 추출하기 위한 한글 데이터셋 구축 방법을 탐구한다. 현대 사회에서는 혼합된 정보가 빠르게 유포되며, 이를 효과적으로 분류하고 추출하는 것은 의사결정 과정에 중요하다. 그러나 이에 대한 학습용 한국어 데이터셋은 아직 부족하다. 이를 극복하기 위해, 본 연구는 생성형 대규모 언어 모델을 사용하여 텍스트 기반 제로샷 학습(zero-shot learning)을 이용한 정보 추출을 시도하며, 이를 통해 목적에 맞는 한국어 데이터셋을 구축한다. 본 연구에서는 시스템-지침-소스입력-출력형식의 프롬프트 엔지니어링을 통해 언어 모델이 원하는 결과를 출력하도록 지시하며, 입력 문장을 통해 언어 모델의 In-Context Learning 특성을 활용하여 데이터셋을 구축한다. 생성된 데이터셋을 기존 데이터셋과 비교하여 본 연구 방법론을 검증하며, 관계 정보 추출 작업의 경우 KLUE-RoBERTa-large 모델 대비 25.47% 더 높은 성능을 달성했다. 이 연구 결과는 한국어 텍스트에서 지식 요소를 추출하는 가능성을 제시함으로써 인공지능 연구에 도움을 줄 것으로 기대된다. 더욱이, 이 방법론은 다양한 분야나 목적에 맞게 활용될 수 있어, 다양한 한국어 데이터셋 구축에 잠재력을 가진다고 볼 수 있다.

Zero-shot Korean Sentiment Analysis with Large Language Models: Comparison with Pre-trained Language Models

  • Soon-Chan Kwon;Dong-Hee Lee;Beak-Cheol Jang
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권2호
    • /
    • pp.43-50
    • /
    • 2024
  • 본 논문은 GPT-3.5 및 GPT-4와 같은 대규모 언어 모델의 한국어 감성 분석 성능을 ChatGPT API를 활용한 zero-shot 방법으로 평가하고, 이를 KoBERT와 같은 사전 학습된 한국어 모델들과 비교한다. 실험을 통해 영화, 게임, 쇼핑 등 다양한 분야의 한국어 감성 분석 데이터셋을 사용하여 모델들의 효율성을 검증한다. 실험 결과, LMKor-ELECTRA 모델이 F1-score 기준으로 가장 높은 성능을 보여주었으며, GPT-4는 특히 영화 및 쇼핑 데이터셋에서 높은 정확도와 F1-score를 기록하였다. 이는 zero-shot 학습 방식의 대규모 언어 모델이 특정 데이터셋에 대한 사전 학습 없이도 한국어 감성 분석에서 높은 성능을 발휘할 수 있음을 시사한다. 그러나 일부 데이터셋에서의 상대적으로 낮은 성능은 zero-shot 기반 방법론의 한계점으로 지적될 수 있다. 본 연구는 대규모 언어 모델의 한국어 감성 분석 활용 가능성을 탐구하며, 이 분야의 향후 연구 방향에 중요한 시사점을 제공한다.

환각 현상 완화를 위한 단위 사실 기반 사후 교정 (Atomic Unit-based Post Editing for Hallucination Reduction)

  • 이용환;신정완;송현제
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.222-227
    • /
    • 2023
  • 환각 현상이란 LLM이 생성 태스크에서 사실이 아닌 내용을 생성하거나 근거가 없는 내용을 생성하는 현상을 말한다. 환각 현상은 LLM이 생성한 출력물에 대한 사용자의 신뢰를 떨어뜨리기 때문에 환각을 완화할 수 있는 방법이 필요하다. 최근 사후 편집 모델 중 하나인 RARR는 입력 텍스트를 질문들 순서에 따라 순차적으로 편집하여 환각을 완화하였지만 이전 단계의 편집 오류가 전파되거나 같은 작업을 반복하는 등의 단점이 있었다. 본 논문은 환각 현상 완화를 위한 단위 사실 기반 사후 교정을 제안한다. 제안한 방법은 입력 텍스트를 단위 사실로 분해하고 각 사실에 대응하는 질문을 생성한 후 검색된 관련 문서로 환각 여부를 판단한다. 환각이라 판단되면 편집을 수행하여 환각을 완화한다. 병렬적으로 편집을 진행하기 때문에 기존 연구의 순차적인 오류 전파 문제를 해결하고 기존 연구에 비해 더 빠른 사후 편집을 진행할 수 있다. 실험 결과, 제안 방법이 RARR보다 Preservation Score, 원문과의 사실성 일치여부, 의도 보존 여부에서 모두 우수한 성능을 보인다.

  • PDF