Annual Conference on Human and Language Technology
/
2021.10a
/
pp.419-422
/
2021
본 논문은 한국어와 영어 코퍼스 93GB를 활용하여 구축한 대형 사전학습기반 언어모델인 KE-T5를 소개한다. KE-T5는 한국어와 영어 어휘 64,000개를 포함하는 대규모의 언어모델로 다양한 한국어처리와 한국어와 영어를 모두 포함하는 번역 등의 복합언어 태스크에서도 높은 성능을 기대할 수 있다. KE-T5의 활용은 대규모의 언어모델을 기반으로 영어 수준의 복잡한 언어처리 태스크에 대한 연구들을 본격적으로 시작할 수 있는 기반을 마련하였다.
Annual Conference on Human and Language Technology
/
2023.10a
/
pp.3-8
/
2023
데이터 증강은 인공지능 모델의 학습에서 필요한 데이터의 양이 적거나 편향되어 있는 경우, 이를 보완하여 모델의 성능을 높이는 데 도움이 된다. 이미지와는 달리 자연어의 데이터 증강은 문맥이나 문법적 구조와 같은 특징을 고려해야 하기 때문에, 데이터 증강에 많은 인적자원이 소비된다. 본 연구에서는 복수의 대규모 언어 모델을 사용하여 입력 문장과 제어 조건으로 프롬프트를 구성하는 데 최소한의 인적 자원을 활용한 의미적으로 유사한 문장을 생성하는 방법을 제안한다. 또한, 대규모 언어 모델을 단독으로 사용하는 것만이 아닌 병렬 및 순차적 구조로 구성하여 데이터 증강의 효과를 높이는 방법을 제안한다. 대규모 언어 모델로 생성된 데이터의 유효성을 검증하기 위해 동일한 개수의 원본 훈련 데이터와 증강된 데이터를 한국어 모델인 KcBERT로 다중 클래스 분류를 수행하였을 때의 성능을 비교하였다. 다중 대규모 언어 모델을 사용하여 데이터 증강을 수행하였을 때, 모델의 구조와 관계없이 증강된 데이터는 원본 데이터만을 사용하였을 때보다 높거나 그에 준하는 정확도를 보였다. 병렬 구조의 다중 대규모 언어 모델을 사용하여 400개의 원본 데이터를 증강하였을 때에는, 원본 데이터의 최고 성능인 0.997과 0.017의 성능 차이를 보이며 거의 유사한 학습 효과를 낼 수 있음을 보였다.
Narratives are fundamental to human cognition and social culture, serving as the primary means by which individuals and societies construct meaning, share experiences, and convey cultural and moral values. The field of artificial intelligence, which seeks to mimic human thought and behavior, has long studied story generation and story understanding, and today's Large Language Models are demonstrating remarkable narrative capabilities based on advances in natural language processing. This situation raises a variety of changes and new issues, but a comprehensive discussion of them is hard to find. This paper aims to provide a holistic view of the current state and future changes by exploring the intersections and interactions of human and AI narrative intelligence. This paper begins with a review of multidisciplinary research on the intrinsic relationship between humans and narrative, represented by the term Homo narrans, and then provide a historical overview of how narrative has been studied in the field of AI. This paper then explore the possibilities and limitations of narrative intelligence as revealed by today's Large Language Models, and present three philosophical challenges for understanding the implications of AI with narrative intelligence.
Kyo-Joong Oh;Ho-Jin Choi;Hyeongak Ahn;Ilgu Kim;Wonseok Cha
Annual Conference on Human and Language Technology
/
2023.10a
/
pp.101-104
/
2023
본 연구는 현대 사회에서 빅데이터의 중요성이 강조되는 가운데, 온라인 시장의 확장과 소비자들의 다양한 소비 행태 변화를 반영한 가격지표 개발을 목표로 한다. 통계청의 기존 통계조사 방법론에 대한 한계를 극복하고, 온라인 쇼핑몰 데이터에서 필요한 정보를 추출하고 가공하기 위해 대규모 언어 모델(LLM)을 활용한 인공지능 기술을 적용해보고자 한다. 초기 연구 결과로 공개 Polyglot을 활용하여 비정형 자료 처리와 품목분류에 응용해 보았으며, 제한된 학습 데이터를 사용하여도 높은 정확도의 처리 결과를 얻을 수 있었으며, 현재는 적용 품목을 확장하여 더욱 다양한 품목에 방법론을 적용하는 연구를 진행 중이다.
Proceedings of the Korean Society of Computer Information Conference
/
2023.07a
/
pp.389-390
/
2023
본 논문에서는 파이썬 코딩 플랫폼에서의 LLM(Large Language Models)을 로직 및 문법 에러 확인, 디버깅 도구로 활용할 수 있는 시스템을 제안한다. 이 시스템은 사용자가 코딩 플랫폼에서 작성한 파이썬 코드와 함께 발생한 에러 문구 및 프롬프트를 LLM 모델에 입력함으로써 로직(문법) 에러를 식별하고 디버깅에 활용할 수 있다. 특히, 입문자를 고려해 프롬프트를 제한하여 사용의 편의성을 높인다. 이를 통해 파이썬 코딩 교육에서 입문자들의 학습 과정을 원활하게 진행할 수 있으며, 파이썬 코딩에 대한 진입 장벽을 낮출 수 있다.
Proceedings of the Korea Information Processing Society Conference
/
2019.10a
/
pp.898-900
/
2019
SPARQL(SPARQL Protocol and RDF Query Language)은 지식 베이스를 위한 표준 시맨틱 질의 언어이다. 최근 인공지능 분야에서 지식 베이스는 질의 응답 시스템, 시맨틱 검색 등 그 활용성이 커지고 있다. 그러나 SPARQL 과 같은 질의 언어를 사용하기 위해서는 질의 언어의 문법을 이해하기 때문에, 일반 사용자의 경우에는 그 활용성이 제한될 수밖에 없다. 이에 본 논문은 신경망 기반 기계 번역 기술을 활용하여 자연어 질의로부터 SPARQL 을 생성하는 방법을 제안한다. 우리는 제안하는 방법을 대규모 공개 지식 베이스인 Wikidata 를 사용해 검증하였다. 우리는 실험에서 사용할 Wikidata 에 존재하는 영화 지식을 묻는 자연어 질의-SPARQL 질의 쌍 20,000 건을 생성하였고, 여러 sequence-to-sequence 모델을 비교한 실험에서 합성곱 신경망 기반의 모델이 BLEU 96.8%의 가장 좋은 결과를 얻음을 보였다.
Journal of the Computational Structural Engineering Institute of Korea
/
v.37
no.2
/
pp.77-84
/
2024
In the fourth industrial-revolution era, the construction industry is transitioning from traditional methods to digital processes. This shift has been challenging owing to the industry's employment of diverse processes and extensive human resources, leading to a gradual adoption of digital technologies through trial and error. One critical area of focus is the safety management at construction sites, which is undergoing significant research and efforts towards digitization and automation. Despite these initiatives, recent statistics indicate a persistent occurrence of accidents and fatalities in construction sites. To address this issue, this study utilizes large-scale language-model artificial intelligence to analyze big data from a construction safety-management information network. The findings are integrated into on-site models, which incorporate real-time updates from detailed design models and are enriched with location information and spatial characteristics, for enhanced safety management. This research aims to develop a big-data-driven safety-management platform to bolster facility and worker safety by digitizing construction-site safety data. This platform can help prevent construction accidents and provide effective education for safety practices.
KIPS Transactions on Software and Data Engineering
/
v.12
no.11
/
pp.481-492
/
2023
This study explores how to build a Korean dataset to extract information from text using generative large language models. In modern society, mixed information circulates rapidly, and effectively categorizing and extracting it is crucial to the decision-making process. However, there is still a lack of Korean datasets for training. To overcome this, this study attempts to extract information using text-based zero-shot learning using a generative large language model to build a purposeful Korean dataset. In this study, the language model is instructed to output the desired result through prompt engineering in the form of "system"-"instruction"-"source input"-"output format", and the dataset is built by utilizing the in-context learning characteristics of the language model through input sentences. We validate our approach by comparing the generated dataset with the existing benchmark dataset, and achieve 25.47% higher performance compared to the KLUE-RoBERTa-large model for the relation information extraction task. The results of this study are expected to contribute to AI research by showing the feasibility of extracting knowledge elements from Korean text. Furthermore, this methodology can be utilized for various fields and purposes, and has potential for building various Korean datasets.
Journal of the Korea Society of Computer and Information
/
v.29
no.2
/
pp.43-50
/
2024
This paper evaluates the Korean sentiment analysis performance of large language models like GPT-3.5 and GPT-4 using a zero-shot approach facilitated by the ChatGPT API, comparing them to pre-trained Korean models such as KoBERT. Through experiments utilizing various Korean sentiment analysis datasets in fields like movies, gaming, and shopping, the efficiency of these models is validated. The results reveal that the LMKor-ELECTRA model displayed the highest performance based on F1-score, while GPT-4 particularly achieved high accuracy and F1-scores in movie and shopping datasets. This indicates that large language models can perform effectively in Korean sentiment analysis without prior training on specific datasets, suggesting their potential in zero-shot learning. However, relatively lower performance in some datasets highlights the limitations of the zero-shot based methodology. This study explores the feasibility of using large language models for Korean sentiment analysis, providing significant implications for future research in this area.
Annual Conference on Human and Language Technology
/
2023.10a
/
pp.222-227
/
2023
환각 현상이란 LLM이 생성 태스크에서 사실이 아닌 내용을 생성하거나 근거가 없는 내용을 생성하는 현상을 말한다. 환각 현상은 LLM이 생성한 출력물에 대한 사용자의 신뢰를 떨어뜨리기 때문에 환각을 완화할 수 있는 방법이 필요하다. 최근 사후 편집 모델 중 하나인 RARR는 입력 텍스트를 질문들 순서에 따라 순차적으로 편집하여 환각을 완화하였지만 이전 단계의 편집 오류가 전파되거나 같은 작업을 반복하는 등의 단점이 있었다. 본 논문은 환각 현상 완화를 위한 단위 사실 기반 사후 교정을 제안한다. 제안한 방법은 입력 텍스트를 단위 사실로 분해하고 각 사실에 대응하는 질문을 생성한 후 검색된 관련 문서로 환각 여부를 판단한다. 환각이라 판단되면 편집을 수행하여 환각을 완화한다. 병렬적으로 편집을 진행하기 때문에 기존 연구의 순차적인 오류 전파 문제를 해결하고 기존 연구에 비해 더 빠른 사후 편집을 진행할 수 있다. 실험 결과, 제안 방법이 RARR보다 Preservation Score, 원문과의 사실성 일치여부, 의도 보존 여부에서 모두 우수한 성능을 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.