• Title/Summary/Keyword: 담수

Search Result 2,337, Processing Time 0.033 seconds

Application of the Artificial Mussel for Monitoring Heavy Metal Levels in Seawater of the Coastal Environments, Korea (Artificial mussel을 이용한 우리나라 연안환경의 중금속 오염도 연구)

  • Ra, Kongtae;Kim, Joung-Keun;Kim, Kyung-Tae;Lee, Seung-Yong;Kim, Eun-Soo;Lee, Jung-Moo;Wu, Rudolf S.S.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.2
    • /
    • pp.131-145
    • /
    • 2014
  • The new passive sampler called "artificial mussel (AM)" offers a potential device to study the spatiotemporal changes of metal concentrations in different marine environment worldwide. The purpose of this study is to characterize metal (Cd, Cr, Cu, Zn, Pb) accumulation on the AM and transplanted mussel (Mytilus edulis) at 5 sites of Lake Shihwa. Both the AMs and mussels showed increasing concentrations of all five metals during the 12 weeks exposure period. Higher concentrations of Zn were showed in both the AMs and Mytilus edulis relative to other metals. The AMs accumulated higher concentrations of Cd, Cr and Zn, but they presented lower levels of Cu and Pb than Mytilus edulis. The correlations for Cd, Cu and Pb were statistically significant between the AMs and Mytilus edulis, indicating that the accumulation patterns for those metals were similar. However, no similarities for Cr and Zn were observed between two monitoring devices across all of the sites in Shihwa Lake. According to relationship for metal concentrations between dissolve phase in seawater and both the AMs and Mytilus edulis, the AMs for Cd, Cu and Zn represent more metal contamination than Mytilus edulis. Our results indicated that the AMs give a better resolution to reveal the spatial differences in dissolved metal concentration. This study suggests that the AMs can provide a time-integrated estimate of metal pollution in marine environments as well as freshwater environments of Korea.

Behaviors of Arsenic in Paddy Soils and Effects of Absorbed Arsenic on Physiological and Ecological Characteristics of Rice Plant lll. Effect of Water Management on As Uptake and the Growth of Rice Plant at As Added Soil (토양중(土壤中) 비소(砒素)의 행동(行動)과 수도(水稻)의 비소흡수(砒素吸收)에 의(依)한 피해생리(被害生理) 생태(生態)에 관(關)한 연구(硏究);Ⅲ.물관리(管理)가 수도의 비소흡수(砒素吸收) 및 생육(生育)에 미치는 영향(影響))

  • Lee, Min-Hyo;Lim, Soo-Kill-H
    • Korean Journal of Environmental Agriculture
    • /
    • v.6 no.1
    • /
    • pp.1-6
    • /
    • 1987
  • A pot experiment was conducted to find out the effect of water management on the growth and uptake of arsenic and inorganic nutrients of rice plant at As added soil. The arsenic were added to soil at the levels of As 0, 10, 50, 100 and 150 ppm, respectively. Water management was done with two ways: intermittent irrigation from ten days after transplanting, and continuous submersion until harvest. Higher soil As levels increased As content in plant but reduced growth rate. Aresenic content in plant was considerably reduced with intermittent irrigation compared to continuous submersion. Rice growth showed also same trend. With increasing As levels in soil, N content in plant was increased but P, K, Ca, Mg, $SiO_2$, Fe and Mn content in plant were tend to be decreased. These inorganic nutrients in plant were also much absorbed in continuous submersion compared to intermittent irrigation. Soil pH was slightly increased with increasing As levels in soil while soil Eh has no relationship with soil As levels. On the other hand, soil pH was higher in the treatment of continuous submersion than that of intermittent irrigation but soil Eh showed reverse trend. With increasing As levels in soil, water soluble-As and Ca-As fractions in soil tend to be increased with continuous submersion, but these fractions has no tendency with intermittant irrigation.

  • PDF

The Concentration and Input/Output of Nitrogen and Phosphorus in Paddy Fields (논에서의 질소 및 인의 농도와 유출입)

  • Shin, Dong-Seok;Kwun, Soon-Kuk
    • Korean Journal of Environmental Agriculture
    • /
    • v.9 no.2
    • /
    • pp.133-141
    • /
    • 1990
  • For the purpose of evaluating nutrient loadings into rivers and lakes from agricultural land, especially from paddy fields and also nutrient degradation in drainage channels, the Total Kjeldahl Nitrogen(TKN) and the Total Phosphorus(TP) were investigated in 29.5 ha. paddy fields in Hwa-Sung, Kyong-Ki, Korea, during the period from May 8, 1989 to Sep. 27, 1989. The results of the study can be su㎜arized as follows : 1. Annual inputs into paddy fields were 180 N-kg/ha 46 P-kg/ha. by fertilization, and 15.0 TKN-kg/ha. 10.0 TP-kg/ha. by irrigation, 8.0 TKN-kg/ha. 0.34 TP-kg/ha. by rainfall respectively. The amount of nutrient involved in surface runoff from paddies was 39.0 TKN-kg/ha. 9.2 TP-kg/ha. and in seepage 7.5 TKN-kg/ha. 2.1 TP-kg/ha. respectively 2. In WS1 stream(reach length equals 950m), nutrients decreased 0.31 TKN-mg/L/km, 0.01 TP-mg/L/km and in WS2 stream (reach length equals 750m) which are more meandering and undulating than WS1, the nutrients decreased 0.84 TKN-mg/L/km, 0.11 TP-mg/L/km. From these results, it was concluded that low stream velocity due to meandering and undulation promotes more degradation of nutrient concentrations. 3. For the purpose of decreasing nutrient loads from paddy fields, the amount of fertilizer used needs to be controlled, irrigation weirs need to be constructed in the drainage channels to delay the transportation of nutrients by decelerating the stream velocity and plants such as plantain-lily need to be cultivated in the channel to consume nutrients and therefore enlarge chances of self-purification.

  • PDF

A Study on the Marine Biological and Chemical Environments in Yeosu Expo Site, Korea (여수 엑스포 해역의 생물.화학적 해양환경 특성)

  • Noh, Il-Hyeon;Oh, Seok-Jin;Park, Jong-Sick;An, Yeong-Kyu;Yoon, Yang-Ho
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.1
    • /
    • pp.1-11
    • /
    • 2010
  • In order to understand the biological environmental characteristics with temporal variations of the physico-chemical factors in 2012 Yeosu Expo site of Korea, we investigated at one station, once per week, from April 2006 to December 2007. The surface water temperature ranged from 6.8 to $27.8^{\circ}C$ and the bottom water temperature ranged from 6.3 to 25.9 $25.9^{\circ}C$. The salinity varied from 12.8 to 33.0 psu in the surface water and from 25.2 to 33.6 psu in the bottom water. A strong halocline was observed between the surface and bottom layers in the summer when a rapid decrease of salinity coincided with heavy rainfall. The DIN concentration ranged from 1.36 to $82.7{\mu}M$ in the surface water and from 0.82 to $25.2{\mu}M$ in the bottom water. Phosphate concentration varied from 0.06 to $2.13{\mu}M$ in the surface water and from 0.07 to $1.38{\mu}M$ in the bottom water. Silicate was $1.68-52.0{\mu}M$ in the surface water and $1.37-30.7{\mu}M$ in the bottom water. The nutrient concentrations were generally high during heavy rainfalls and low water temperature periods, and considerably decreased in spring and autumn. The N/P ratio ranged from 4.43 to 325 in the surface water and from 3.8 to 321 in the bottom water. It increased rapidly during the heavy rainfall season and remained at a value of approximately 16 in other periods. The chlorophyll a concentration ranged from 0.46 to $65.0{\mu}g$ $L^{-1}$ in the surface water and from 0.71 to $15.0{\mu}g$ $L^{-1}$ in the bottom water. $Chl-{\alpha}$ concentration remained low in periods of low water temperature, however rapidly increased in periods of high water temperature. From the results of principal component analysis (PCA) and multiple regression analysis (MRA), we conclude that temporal variations of physico-chemical and biological factors were greatly affected by the influx of fresh water, and that nutrients were well controlled by their uptake and assimilation by phytoplankton. Also, during the low water temperature periods, environmental structure in this study site was affected by recycled nutrients through nutrient cycling and mineralization.

The Effect of Wollastonite and Manganese Dioxide on Rice Grown on a Flooded Acid Sulfate Soil (특이산성토(特異酸性土)(답(沓))에 생육(生育)한 수도(水稻)에 대(對)한 규회석(珪灰石) 및 MnO2의 효과)

  • Park, Y.D.;Kim, Y.S.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.3 no.1
    • /
    • pp.23-28
    • /
    • 1970
  • The effect of wollastonite and manganese dioxide on the growth of rice on an acid sulfate soil were investigated in pot experiment. 1. Since aluminum content in the leachate of soil was reduced with increasing the pH and these chemical changes in the leachate were more pronounced by applying wollastonite, aluminum toxicity in flooded paddy rice was overcome by applying wollastonite, or flooding. 2. Poor growth of rice with iron toxicity-like symptoms on the untreated acid sulfate soil may be caused by excess iron and sulfur. Plants applied wollastonite, however, grew normally and did not show any symptoms. Iron and sulfur contents in the plant was reduced by applying wollastonite. 3. Because of the iron content in the both leachate and plant can be lowered by applying wollastonite, iron-toxicity was averted by applying the wollastonite. 4. Application of manganese dioxide in combination with wollastonite did not counteracted iron content in the plant as compared with the wollastonite treatment. 5. The application of wollastonite increased the dry weight of straw and grain yield. Manganese dioxide with wollastonite caused the increase of number of spickelets per panicles and ripened grains as compared with wollastonite. 6. From these results it can be concluded that the major cause of the poor growth of rice on acid sulfate soil is iron toxicity and the Fe-toxicity can be reduced by application of wollastonite.

  • PDF

Application Effect of Food Waste Compost Abundant in NaCl on the Growth and Cationic Balance of Rice Plant in Paddy Soil (NaCl을 다량 함유한 음식물쓰레기 퇴비 시용이 논 토양에서 벼의 생육과 체내 양이온 균형에 미치는 영향)

  • Lee, Sang-Eun;Ahn, Hyun-Jin;Youn, Seung-Kil;Kim, Seak-Min;Jung, Kwang-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.2
    • /
    • pp.100-108
    • /
    • 2000
  • High sodium contents in food-waste compost(FWC) is the greatest limitation to recycle it to arable lands in Korea. The effects of the FWC application to paddy soil on the growth of rice plants, cationic balance in plants, and the sodicity of soil have been studied in pot trials. The effects of FWC application were compared with those of NaCl compound and swine manure compost(SMC) application. $Na_2O$ contents of FWC were high as 2.2%. Immediately after transplanting, rice plants in three treatments showed severe wilting in the order of 40Mg FWC $ha^{-1}$ > NPK+900kg $NaClha^{-1}$ > 20Mg FWC $ha^{-1}$. The high EC value and volatile acid contents of soil solution were regarded as the cause of severe wilting of young rice plants. Increase of NaCl application rate upto $900kgha^{-1}$ showed no significant reduction of dry matter yield at harvesting stage. Regardless of application rates FWC reduced the dry matter yield at harvesting stage, while SMC increased it with increase of application rates upto $40Mgha^{-1}$. In NPK+NaCl and FWC treatments, Na contents and equivalent ratio in plants increased linearly with increase of Na application rates. Between Na and K equivalent ratio negative correlation with high significance was shown. In contrast to much difference of Na, K, and Na/K equivalent ratio among treatments, little difference of Na+K indicated the physiological substitution of Na for K in rice plants. Na use efficiency in NPK+NaCl and FWC treatments showed 12-22%.

  • PDF

Fresh-water Algae Occurred in Paddy Rice Fields I. Regional Distribution (논발생(發生) 담수조류(淡水藻類)에 관(關)한 연구(硏究) I. 지대별(地帶別) 발생분포(發生分布))

  • Lee, H.K.;Park, J.E.;Ryu, G.H.;Lee, J.O.;Park, Y.S.
    • Korean Journal of Weed Science
    • /
    • v.12 no.2
    • /
    • pp.158-165
    • /
    • 1992
  • A survey on nation-wide distribution of fresh-water algae occurring in paddy rice fields was conducted in 1991. The algae which were collected from the whole nation were classified into a total of 54 genera including 14 genera in the blue-green algae. 29 genera in the green algae, 1 genus in the stoneworts. 3 genera in the euglenoids and 7 genera in the diatoms. The green algae and diatoms occurring in plain regions were diverse in terms of the number of genera distributed, whereas there was no regional difference in diversity of the blue-green algae and the euglenoids. Among the green algae, the suspended unicellular algae such as the genera, Chlamydomonas, Pandorina and Gonium, were widespread in plain regions, but the multicellular algae such as the genera, Spirogyra, Oedogonium, Ulothrix and Hydordictyon, were major in mountainous and attitudinal regions. The filamentous green algae such as the genera. Cladophora and Rhizoclonium, were dominant in reclaimed saline fields. The blue-green algae Oscillatoria spp. and the diatoms Navicula spp. were abundant in soil flakes.

  • PDF

Studies on the Environmental Factors Affecting Growth and Tuber Formation of Eleocharis kuroguwai Ohwi (올방개(Eleocharis kuroguwai Ohwi)의 생장(生長)과 괴경형성(塊莖形成)에 미치는 환경요인(環境要因))

  • Ku, Y.C.;Choung, S.G.
    • Korean Journal of Weed Science
    • /
    • v.13 no.1
    • /
    • pp.44-54
    • /
    • 1993
  • This experiment was conducted to understand the environmental factors affecting growth and tuber formation such as temperature, day length, tight intensity, water condition and cutting time of Eleocharis kuroguwai Ohwi. Plant height, shoot number and dry weight of E. kuroguwai were higher at high temperature, 25/$25^{\circ}C$ (day/night), while nitrogen content was higher at low temperature, 20/$15^{\circ}C$. Plant height was more affected by water temperature, while shoot number and dry weight were more affected by air temperature. Contents and absorption of nitrogen, phosphorus, and potassium in top parts of E. kuroguwai were higher under greater difference between air and water temperatures, i.e., 18/$28^{\circ}C$ and 28/$18^{\circ}C$. The number and weight of tubers were increased under greater difference between air and water temperatures, i.e, 18/$28^{\circ}C$ and 28/$18^{\circ}C$, while they were inhibited at low or high air/water temperatures (18/$18^{\circ}C$ or 28/$28^{\circ}C$). Tubers of E. kuroguwai were formed at 8-or 12-hour day length, however, no tuber was formed at l6-hour day length. Photoinductive period for tuber initiation of E. kuroguwai was between 30 and 45 days after emergence, and the induction period of short-day treatment was less than 10 days. Tuber number and weight were reduced by shading due to inhibition of the growth of top and underground parts. Number of days from planting to tuber initiation was shortned as planting time was delayed and plant height, dry weight, and tuber number were also reduced by delayed planting. Tuber number at l0 to 15cm water depth was decreased 63 to 75% as compared with 1 to 5cm water depth. Tuber number and dry weight were not affected by the size of tubers at planting. Due to the reduced growth of top and underground parts, tuber number and dry weight of E. kuroguwai were decreased by delayed shoot cutting. The critical cutting time to inhibit the growth of E. kuroguwai was about 70 days after emergence.

  • PDF

Eco-friendly and efficient in situ restoration of the constructed sea stream by bioaugmentation of a microbial consortium (복합미생물 생물증강법을 이용한 인공해수하천의 친환경 효율적 현장 수질정화)

  • Yoo, Jangyeon;Kim, In-Soo;Kim, Soo-Hyeon;Ekpeghere, Kalu I.;Chang, Jae-Soo;Park, Young-In;Koh, Sung-Cheol
    • Korean Journal of Microbiology
    • /
    • v.53 no.2
    • /
    • pp.83-96
    • /
    • 2017
  • A constructed sea stream in Yeongdo, Busan, Republic of Korea is mostly static due to the lifted stream bed and tidal characters, and receives domestic wastewater nearby, causing a consistent odor production and water quality degradation. Bioaugmentation of a microbial consortium was proposed as an effective and economical restoration technology to restore the polluted stream. The microbial consortium activated on site was augmented on a periodic basis (7~10 days) into the most polluted site (Site 2) which was chosen considering the pollution level and tidal movement. Physicochemical parameters of water qualities were monitored including pH, temperature, DO, ORP, SS, COD, T-N, and T-P. COD and microbial community analyses of the sediments were also performed. A significant reduction in SS, COD, T-N, and COD (sediment) at Site 2 occurred showing their removal rates 51%, 58% and 27% and 35%, respectively, in 13 months while T-P increased by 47%. In most of the test sites, population densities of sulfate reducing bacterial (SRB) groups (Desulfobacteraceae_uc_s, Desulfobacterales_uc_s, Desulfuromonadaceae_uc_s, Desulfuromonas_g1_uc, and Desulfobacter postgatei) and Anaerolinaeles was observed to generally decrease after the bioaugmentation while those of Gamma-proteobacteria (NOR5-6B_s and NOR5-6A_s), Bacteroidales_uc_s, and Flavobacteriales_uc_s appeared to generally increase. Aerobic microbial communities (Flavobacteriaceae_uc_s) were dominant in St. 4 that showed the highest level of DO and least level of COD. These microbial communities could be used as an indicator organism to monitor the restoration process. The alpha diversity indices (OTUs, Chao1, and Shannon) of microbial communities generally decreased after the augmentation. Fast uniFrac analysis of all the samples of different sites and dates showed that there was a similarity in the microbial community structures regardless of samples as the augmentation advanced in comparison with before- and early bioaugmentation event, indicating occurrence of changing of the indigenous microbial community structures. It was concluded that the bioaugmentation could improve the polluted water quality and simultaneously change the microbial community structures via their niche changes. This in situ remediation technology will contribute to an eco-friendly and economically cleaning up of polluted streams of brine water and freshwater.

Effects of Cultural Practices on Methane Emission in Tillage and No-tillage Practice from Rice Paddy Fields (논토양에서 경운 및 무경운재배시 재배방법별 메탄 배출 양상)

  • Ko, Jee-Yeon;Lee, Jae-Saeng;Kim, Min-Tae;Kang, Hang-Won;Kang, Ui-Gum;Lee, Dong-Chang;Shin, Yong-Gwang;Kim, Kun-Yeop;Lee, Kyeong-Bo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.35 no.4
    • /
    • pp.216-222
    • /
    • 2002
  • Field experiments were conducted to investigate the effect of various cultural practices on methane($CH_4$) emission in tillage and no-tillage practice in a clayey paddy soil from 1998 to 2000. The factors evaluated in tillage and no-tillage methods were types of nitrogen fertilizers, application method of chemical fertilizers, rice straw application and cultivation method. Of the nitrogen fertilizers, the amount of $CH_4$ emission in ammonium sulfate plot was the lowest, regardless of tillage and the application method. 26.4~41.1% of reduction by ammonium sulfate compared with urea. But in no-tillage which have problem of poor rice yield than tillage, coated urea was more effective nitrogen fertilizer because that showed similar $CH_4$ emission and highest rice yield at 80% of dosage of nitrogen. No-tillage plot emitted lower $CH_4$ than tillage plot where the fertilizers were incorporated. On the contrary, no-tillage plot showed a little higher $CH_4$ emission compared with tillage plot for the surface application. When rice straw was applied, no-tillage practice reduced methane emission by 26.6% compared with tillage practice, but showing a little difference of 10.7% in no application. With cultivation method, no-tillage practice reduced methane emission 26.6% compared with tillage for the 30-d-old seedling transplanting. But for the dry direct seeding practice, no-tillage was a less effective because considerable amounts of rice straw incorporated by tillage were more decomposed aerobically in the soil and emitted as $CO_2$ to the atmosphere with flooding in no-tillage soil.