• 제목/요약/키워드: 달 표토

검색결과 16건 처리시간 0.025초

편광관측을 통한 달 표면 표토의 입자 크기 측정

  • 정민섭;김성수;민경욱
    • 천문학회보
    • /
    • 제37권2호
    • /
    • pp.104.1-104.1
    • /
    • 2012
  • 달표면 표토의 평균 입자크기와 성숙도(maturity)는 달 연구 및 탐사에 있어 중요한 정보이다. 표토의 성숙도는 탐사하는 지역의 형성시기에 대한 정보를 제공하고, 평균입자크기는 달 탐사 로보의 설계에 중요한 정보로 쓰이기 때문이다. 우리는 달표면 표토의 평균입자크기와 성숙도를 측정하기 위하여 경희대학교 천문대에서 12cm 굴절망원경과 정방형 2k CCD를 이용하여 $633{\mu}m$ 파장의 편광관측을 수행하였다. 관측의 공간 분해능은 달의 중심부에서 2.89km/pixel이다. 달표면에서 산란된 빛의 편광도는 달표면 표토의 평균입자크기를 알 수 있는 중요한 정보가 된다. 표토의 평균입자크기는 최대편광도와 알비도에 관계되기 때문에 편광관측과 알비도 관측으로부터 평균입자크기를 측정할 수 있다. 표토의 평균입자크기는 시간이 지남에 따라서 점점 작아지는데, 이는 표토가 미세운석체의 충돌에 오랜 시간 동안 노출되어 있기 때문이다. 미세운석체의 충돌은 달표면에서 고르고 지속적으로 일어났기 때문에, 표토의 평균입자크기를 알 수 있다면 표토가 얼마나 오랫동안 달표면에 노출되었는지를 나타내는 성숙도를 측정할 수 있다. 우리는 편광관측을 통하여 처음으로 달표면 전체의 평균입자크기의 분포를 측정하였고, 그로부터 표토의 성숙도를 추정했다.

  • PDF

우주 현지자원활용 글로벌 동향 (Global Trends of In-Situ Resource Utilization )

  • 류동영
    • 우주기술과 응용
    • /
    • 제3권3호
    • /
    • pp.199-212
    • /
    • 2023
  • 과거 1970년대까지의 달 표면탐사에서는 단기간 달에서의 임무 특성을 가지는 것에 비해 최근 달 표면탐사는 달에서의 장기체류와 이를 기반으로 궁극적으로 화성까지 탐사 범위를 확장하는 방향으로 진행되고 있다. 인간의 달표면 장기체류를 실현하기 위해서는 탐사 현지 자원을 활용하여 체류에 필요한 소비재나 연료 등의 현지 생산 및 사용이 중요한 전제가 된다. 국제우주탐사협의체(ISECG, International Space Exploration Coordination Group)에서 각국의 우주탐사 계획을 반영하여 제시하는 글로벌 우주탐사 로드맵에는 달표면 탐사로부터 화성탐사로 이어지는 발전 단계가 제시되며 각 단계에서 현지자원활용은 중요한 요소가 되고 있다. 본 논문에서는 국제우주탐사협의체의 현지자원활용(ISRU) 격차분석 보고서를 기반으로 현지자원활용의 기술 분야를 현지 연료 및 소비재 생산, 현지 건설, 우주상 제조, 그리고 생성 결과물의 보관 및 활용, 자원활용에 필요한 전력시스템 등과 같은 연관 분야로 분류하여 주요 분야에서의 기술 개발 및 검증 현황을 분석한다. 다수의 국가는 달 자원 중 극 지역 영구음영지역의 얼음물 이용 그리고 표토에서 산소 등의 추출에 우선 순위를 부여하고, 무인 착륙임무를 통하여 달 남극 영구음영지역 근처에서 물질 및 물 분포 확인을 준비하고 있다. 자원 활용을 위하여 수전해를 이용한 수소, 산소 등 연료 생산, 모사토를 이용한 달 표토에서 산소의 추출 등의 기술을 개발하고 있다. 자원활용 기술의 개발을 위하여 지상에 달표면 모사환경을 구현하고 기술의 개발, 시나리오의 시연 등을 통한 효율적 현지자원활용 구현 방법 등을 모색하고 있다. 지속 가능한 달 표면 탐사를 위하여 각국은 달 표면 도달, 자원의 조사, 물질의 추출 등에 서비스 구매 등 민간 영역의 능력을 활용하고 발전시키는 노력을 병행하고 있다.

전산유체역학을 이용한 아폴로 달착륙선 하강엔진의 플룸 거동 연구 (Plume Behavior Study of Apollo Lunar Module Descent Engine Using Computational Fluid Dynamics)

  • 최욱;이균호;명노신
    • 한국항공우주학회지
    • /
    • 제45권9호
    • /
    • pp.766-774
    • /
    • 2017
  • 달착륙선 하강엔진에서 사출된 배기가스가 월면과 충돌할 때 배기가스와 월면과의 상호작용으로 인해 월면에 분포되어 있는 표토가 분산된다. 이때, 분산된 표토입자가 착륙선과 충돌할 경우 성능 저하 등과 같은 역효과를 야기할 수 있다. 따라서 본 연구에서는 달착륙 엔진의 배기가스 거동을 전산유체해석을 통해 예측하고자 하였다. 하강엔진의 노즐내부 영역은 Navier-Stokes 방정식 기반의 연속체 유동 모델을 이용하여 해석하였으며, 노즐 외부 배기가스 거동은 연속체 유동 모델과 직접모사법(DSMC)을 적용하여 해석한 결과를 각각 비교 및 분석하였다. 이를 통해 진공환경에서 달착륙선 하강엔진에 대한 최적의 배기가스 해석 절차를 수립할 수 있었으며, 차후 한국형 달착륙선 개발에 충분히 활용할 수 있을 것으로 기대된다.

우주과학자에게 필요한 달의 지형과 지질 (Basic Lunar Topography and Geology for Space Scientists)

  • 김용하;최성희;유용재;김경자
    • 우주기술과 응용
    • /
    • 제1권2호
    • /
    • pp.217-240
    • /
    • 2021
  • 본 논문은 다가오는 달 유인 탐사시대를 대비하여 달의 지형 및 지질학적 기초 지식을 우주과학자들에게 소개한다. 달 지형 용어에 대한 학술적 기원을 간단히 정리하였으며, 현재 통용되는 한글 용어를 확장하여 새로운 지형 용어들을 제안하였다. 특히, 일반인도 꼭 알아야 할 대표적인 달의 지형으로 1 대양(폭풍의 대양), 10대 바다(비의 바다, 평온의 바다, 고요의 바다, 감로주의 바다, 풍요의 바다, 위난의 바다, 증기의 바다, 인식의 바다, 습기의 바다, 구름의 바다), 6대 충돌구(티코, 코페르니쿠스, 케플러, 아리스타쿠스, 스테비누스, 랑그레누스)를 제안한다. 달의 지형으로 고원(highland), 바다(maria), 산맥(mountains), 충돌구(crater), 함몰 용암굴/열구(rille, rima), 지구대(graben), 돔(dome), 용암동굴(lava tube), 주름 능선(wrinkle ridge), 참호(trench), 절벽(rupes), 그리고 달의 표면 흙을 표토(regolith)로 사용할 것을 제안한다. 또한, 달의 내부 구조 표준 모델과 대표적 암석을 소개하였다. 지구의 지질 시대구분은 발견 화석과 방사성 동위원소를 이용한 절대연령 측정을 기준으로 하는 반면, 표준적인 달의 지질 시대 구분은 대표적인 충돌구 형성을 기준으로 선-넥타리스 기(Pre-Nectarian), 넥타리스 기(Nectarian), 임브리움 기(Imbrian), 에라토스네스 기(Erathostenesian), 코페르니쿠스 기(Copernican)로 나뉜다. 마지막으로 인간의 달 활용에 획기적인 계기가 되는 최근의 달 표면 물 발견에 대한 내용을 정리하였으며, 향후 한국지질자원연구원에서 개발될 물 채취 장치의 개념도 소개하였다.

영남지역(嶺南地域)의 경지확대를 위한 연구 -III. 청도군 지역(地域)에 분포(分布)된 반층토(장원통(壯元統))의 특성(特性)과 이용(利用)에 관하여 (Studies on the expansion of arable land in Yeongnam district -III. The Characteristics and utilization of Jangweon series distributed in Cheongdo-gun area)

  • 정연태;최주현;박뢰경
    • 한국토양비료학회지
    • /
    • 제12권2호
    • /
    • pp.99-107
    • /
    • 1979
  • 청도군의 산록경사지중(山麓傾斜地中) 가장 큰 비중(比重)을 점(占)하고 있는 장원통의 특성(特性)과 토지이용(土地利用) 및 토양생성(土壤生成)에 대하여 조사연구한 결과(結果)는 다음과 같았다. 1. 장원통의 분포면적(分布面積)은 1,719ha로서 산록경사지중(山麓傾斜地中) 총 면적(面積)의 42.3%에 달(達)하였다. 2. 형태적(形態的) 특성(特性)을 보면 표토(表土)(A층)는 갈색(褐色)으로 푸슬푸슬한 반각괴상 내지(乃至) 입상이고 심토(心土)(B층)는 담황갈색(淡黃褐色)으로 매우 딱딱한 반층을 이룬 반각괴상 또는 판상으로 회갈색반문(灰褐色斑紋)이 있으며 기층(C층)도 매우 견밀(堅密)하나 구조(構造)는 없고 약간(若干)의 망강 결핵(結核)이 있다. 전(全) 단면에 20~30% 정도(程度)의 석력(石礫)이 함유(含有)되어 있다. 3. 전층의 토성(土性)은 양토(壤土) 또는 미사질양토(微沙質壤土)이고 점토함량(粘土含量)이 19~24% 범위로서 식양질계(fine loamy family)에 속하였다. 가비중(假比重)은 표토(表土)에서는 1.26으로 보통(普通)이나 경반층이 있는 심토(心土)에서는 1.45~1.55 로 높은 편(便)이었고 삼상비중(三相比中) 액상(液相)이 21.3~24.7%로 비교적(比較的) 높은 편(便)이었다. 4. 화학적 특성(特性)을보면 표토(表土)는 매우 강한 산성(酸性)이었고(pH4.9) 유기물함량(有機物含量)은 2.6% 정도(程度)이었다. 염기치환용량은 10.8~12.7m.e/100g로 보통(普通)이었고 표토(表土)의 치환침출염기중 석회(石灰)와 고토(苦土)가 부족(不足)한 편(便)이었다. 5. 총 분포면적(分布面積)의 34.6%(594ha)는 과수(果樹)나 상전(桑田) 등(等) 영년생작물(永年生作物)이 재배(栽培)되고 있으며 생산력(生産力)도 충적토(沖積土)와 대등하였는데 이는 고산악산록(高山岳山麓)에 분포(分布)되어 연중(年中) 수분공급(水分共給)이 충분(充分)한데 기인(起因)된 것으로 보였다. 6. 장원통의 경반층 생성원인(生成原因)은 갱신기말(更新期末)에 많이 일어났던것으로 믿어지는 액화(液化)와 solifluction 에 기인(起因)된것으로 보이며 미농무성(美農務省)의 토양신분류체계에 의(依)하면 Typic fragiochrepts에 속하고 F.A.O/UNESCO 분류안(分類案)에 따르면 Eutric planosols에 해당되었다.

  • PDF

토양이화학성(土壤理化學性) 및 삼요소(三要素) 시용량(施用量)이 지황(地黃) (Rehmannia glutinosa) 근경(根莖) 및 엽중(葉中)의 무기성분함량(無機成分含量)에 미치는 영향(影響) (Effects of the Soil Properties and N, P, K Application on the Contents of Inorganic Constituents in the Rhizoma and Leaf of Rehmannia glutinosa)

  • 박병윤;장상문;박수준;최정
    • 한국토양비료학회지
    • /
    • 제22권1호
    • /
    • pp.45-52
    • /
    • 1989
  • 한방(韓方)의 주요(主要)한 약용식물(藥用植物)로 사용(使用)되어 온 지황(地黃)의 품질(品質)을 향상(向上)시키기 위한 합리적(合理的)인 포장선정(圃場選定) 및 시비량(施肥量)을 결정(決定)하기 위하여 산지토양의 이화학성(理化學性) 및 삼요소(三要素) 시용량(施用量)이 지황(地黃)의 무기성분함량(無機成分含量)에 미치는 영향(影響)을 조사(調査)하였다. 재배지토양(栽培地土壤)의 토성(土性)은 사질양토(砂質壤土)~사질식양토(砂質埴壤土)가 대부분(大部分) 이었다. 지황근경(地黃根莖)의 질소함량(窒素含量)은 표토(表土)의 유기물(有機物) 및 전질소함량(全窒素含量), 심토(心土)의 점토함량(粘土含量)과 부(負)의 상관(相關)이, 심토(心土)의 모래함량(含量)과는 고도(高度)의 정(正)의 상관(相關)이 인정(認定)되었다. 지황근경(地黃根莖)의 Ca함량(含量)은 표토(表土) 및 심토(心土)의 모래함량(含量)과 고도(高度)의 부(負)의 상관(相關)이, 표토(表土) 및 심토(心土)의 점토(粘土) 및 유기물함량(有機物含量)과는 정(正)의 상관(相關)이 인정(認定)되었다. 지황근경(地黃根莖)의 Fe 함량(含量)은 표토(表土)의 점토(粘土), 인산(燐酸) 및 가리함량(加里含量)과 정(正)의 상관(相關)이 인정(認定)되었다. 지황엽중(地黃葉中)의 무기성분함량(無機成分含量)은 근경중(根莖中)의 무기성분함량(無機成分含量)보다 많았으며, 특(特)히 Fe와 Cu의 함량(含量)은 약(約) 10배에 달하였다. 근경중(根莖中)의 질소함량(窒素含量)은 20kg/10a, 엽중(葉中)의 질소함량(窒素含量)은 10kg/10a의 질소시용량(窒素施用量)부터 증가(增加) 하였다. 인산(燐酸) 및 가리(加里)의 증시(增施)에 따른 지황근경(地黃根莖) 및 엽중(葉中)의 인(燐) 및 가리(加里)의 함량(含量)에는 일정(一定)한 경향(傾向)이 없었다.

  • PDF

한국 조경수목 근원직경 측정의 합리적 위치 설정에 대한 연구 (A Study on the Reasonable Measurement Point of Root Collar Diameter of Landscape Trees in Korea)

  • 한용희;김화정;김도균
    • 한국조경학회지
    • /
    • 제49권5호
    • /
    • pp.59-70
    • /
    • 2021
  • 본 연구는 한국 조경수목의 근원직경 측정의 모호성으로 생산자와 시공자 간의 검측 기준이 달라서 발생되는 분쟁을 줄일 수 있는 합리적인 근원직경 측정 위치 설정 방안에 대하여 실증 조사·분석하였다. 조경수목의 근원직경 측정 부위별 차이는 지하부 -6cm에서 표토부인 0cm까지는 3.59cm이었고, 지상부의 표토 0cm에서부터 6cm까지는 1.35cm로 근원직경의 측정위치별 차이는 지상부보다는 지하부에서 더 크게 나타났다. 조경수목 근원직경의 표준편차의 크기는 지하부 -6cm에서 표토부인 0cm까지는 0.64이었고, 지상부의 표토 0cm에서부터 6cm까지의 표준편차 차이는 0.16으로 근원직경의 측정위치별 차이는 지상부보다는 지하부에서 더 크게 나타났다. 조경수목 근원직경의 합리적 측정 위치 설정은 근원직경 측정 위치별 규격의 크기 변화 추세선에서 수간직경의 표준편차가 가장 적어지는 변곡점으로 설정하는 것이 제안되었다. 수종별 합리적인 측정 위치는 산딸나무 지상 18cm, 이팝나무 지상 12cm·느티나무 지상 12cm·팽나무 지상 12cm, 때죽나무 지상 10cm·산수유 지상 10cm, 단풍나무 지상 6cm·먼나무 지상 6cm, 가시나무 지상 4cm, 배롱나무 지상 2cm 이상으로 나타났다. 조경수목 근원직경 측정 부위별 차이가 공시수종 전체에서 표준편차가 작고, 편차의 기울기가 안정적인 합리적인 평균 측정위치는 지상부 평균 12cm 이상으로 나타났다. 조경수목 근원직경의 합리적인 측정위치 설정은 지상부 평균 12cm 이상에서부터라고 할 수 있으나 전통적인 관행상으로 익숙한 1자(尺) 30cm 인식이 빠르며, 측정자의 측정 위치의 편리성, 외국의 조경수목 측정기준에 대한 통일성 등 조경수목 근원직경의 합리적인 측정위치는 지표면 30cm 높이에서 측정하는 것이 좋을 것으로 추천되었다.

우리나라 전토양(田土壤)의 특성(特性) (저구릉(低丘陵), 산록(山麓) 및 대지(臺地)에 분포(分布)된 적황색토(赤黃色土)를 중심(中心)으로) (The Morphology, Physical and Chemical Characteristics of the Red-Yellow Soils in Korea)

  • 신용화
    • 한국토양비료학회지
    • /
    • 제6권1호
    • /
    • pp.35-52
    • /
    • 1973
  • 우리나라 전작물(田作物)의 저위생산성의 원인(原因)과 그 대책(對策)을 토양학적(土壤學的)인 면(面)에서 추궁(追窮)함에 있어 우선(于先) 현재경작(現在耕作)이 많이 되여 있고 또 앞으로 개발(開發)의 가능성(可能性)을 가진 저구릉(低丘陵), 산록(山麓) 및 대지(臺地)의 적황색토(赤黃色土)에 대(對)하여 현재(現在)까지 밝혀진 조사(調査) 결과(結果)를 종합(綜合)하였으며 그 결과(結果)를 요약(要約)하면 다음과 같다. 1. 적황색토(赤黃色土)는 우리나라 남부(南部)를 비롯하여 중부이북(中部以北)의 저구릉(低丘陵), 산록(山麓) 및 대지(臺地)에 분포(分布)하고 있으며 화강암(花崗岩), 화강편마암(花崗片麻岩)을 비롯한 석회암(石灰岩), 혈암(頁岩) 그리고 홍적층(洪積層) 등(等)을 모재(母材)로 하고 있다. 2. 적황색토(赤黃色土)는 A, Bt, C층(層)으로 되여 있다. A층(層)은 유기물(有機物)이 엷게 덮여서 암색(暗色)을 띄우는 양질(壤質), 식양질(埴壤質)이며 Bt층(層)은 진갈색(眞褐色), 적갈색(赤褐色), 황적색(黃赤色)의 식질(埴質) 혹은 식양질(埴壤質)로서 토괴표면(土塊表面)에 점토피막(粘土皮膜)이 형성(形成)되여 있다. C층(層)은 모재(母材)에 따라 다양다색(多樣多色)하며 Bt층(層)에 비(比)하여 토성(土性)이 거칠고 토양구조(土壤構造)의 발달(發達)이 없다. 토양(土壤)의 깊이는 지형(地形) 모재(母材)에 따라 다르나 대부분(大部分)이 100cm 이내(內外)이다. 3. 적황색토(赤黃色土)의 물리적성질(物理的性質)에 있어 점토함량(粘土含量)은 표토(表土)에서 18~35% 심토(心土)에서 30~90%로서 심토(心土)의 점토함량(粘土含量)은 표토(表土)에 비(比)하여 약(約) 2배(倍) 내외(內外)가 된다. 가비중(假比重)은 표토(表土)에서 1.2~1.3심토(心土)에서 1.3~1.5 그리고 삼상(三相)의 분포(分布)는 표토(表土)에서 고상(固相) 45~50 액상(液相) 30~45, 기상(氣相) 5~25, 심토(心土)에서 고상(固相) 50~60, 액상(液相) 35~45, 기상(氣相) 15미만(未滿)으로 대부분(大部分)이 치밀(緻密)하다, 유효수분범위(有効水分範圍)는 비교적(比較的) 좁아서 표토(表土)에서 10~23%, 심토(心土)에서 5~16% 범위(範圍)이다. 4. 적황색토(赤黃色土)의 화학적성질(化學的性質)에 있어 토양반응(土壤反應)은 모재(母材)에 따라 달라서 석회암(石灰岩) 및 구하해혼성퇴적(舊河海混成堆積)을 모재(母材)로한 토양(土壤)에서는 중성(中性) 급지(及至) 염기성(鹽基性) 그밖의 토양(土壤)에서는 산성(酸性) 급지(及至) 강산성(强酸性)을 띠운다. 표상(表上)의 유기물함량(有機物含量)은 식생(植生), 침식(侵蝕), 경종(耕種) 등(等)에 따라서 차(差)가 크며 1.0~5.0% 범위(範圍)에 있다. 염기치환용량(鹽基置換容量)은 5~40me/100gr이며 이는 유기물(有機物), 점토(粘土), 미사함량(微砂含量) 등(等)과 밀접(密接)한 관계(關係)를 가지고 있다. 치환침출염기(置換浸出鹽基)는 용탈(溶脫)되여서 염기포화도(鹽基飽和度)가 대체(大體)로 낮지만 석회암(石灰岩)에 기인(基因)된 토양(土壤)에서는 석회(石灰), 마구네슘함량(含量)이 높아서 염기포화도(鹽基飽和度)도 높다. 5. 적황색토(赤黃色土)의 점토광물(粘土鑛物)은 대부분(大部分)이 Kaolin 광물중(鑛物中)의 하나인 Halloysite와 운모(雲母)의 풍화생성물(風化生成物)인 Vermiculite, Illite를 주광물(主鑛物)로 하고 있으며 소량(少量)의 Chlorite, Gibbisite, Hematite 혼층광물(混層鑛物)과 1차(次) 광물(鑛物)인 석영(石英) 및 장석(長石)이 존재(存在)한다. 6. 적황색토(赤黃色土)는 미국(美國)의 Red-yellow podzolic Soils 및 Reddish Brown Lateritic Soils의 일부(一部) 그리고 일본(日本)의 적황색토(赤黃色土)와 유사(類似)한 특성(特性)을 가진다. 미(美)7차(次) 시안(試案)에 의(依)하면 적황색토(赤黃色土)는 Udults 및 Udalfs 그리고 FAO 분류안(分類案)에 의(依)하면 Acrisols, Luvisols 그리고 Nitosols로 분류(分類)할 수 있다.

  • PDF

간척년수(干拓年數)에 따른 토성(土性) 및 작토층위별(作土層位別) 수종(數種) 화학성분변화(化學成分變化) 차이(差異)에 관(關)한 연구(硏究) (Changes of some chemical constituents in different soil depth with textures of Fluvio-marine soil under assessment of reclamation duration)

  • 김성채
    • 한국토양비료학회지
    • /
    • 제20권1호
    • /
    • pp.23-28
    • /
    • 1987
  • 간척년수(干拓年數)에 따라 토층별(土層別) 토성(土性)이 다른 토양(土壤)에서 수종토양화학성분(數種土壤化學成分) 변화정도(變化程度)를 알고저 봉남통(鳳南統), 광활통(廣活統) 및 만경통(萬頃統)의 답토양(畓土壤)을 공시(供試)하여 시험(試驗)한 결과(結果)를 보면 다음과 같다. 1. 토양중(土壤中) 가리(加里), 석회(石灰), 고토(苦土), 소-다, 망간, 규산(硅酸) 및 양(陽)ion 치환용량등(置換容量等)은 간척년수(干拓年數)가 경과(經過)할수록 현저(顯著)한 감소(減少)를 보였음. 2. 토양유기물함량(土壤有機物含量)은 간척년수(干拓年數)의 경과(經過)에 따라 증가(增加) 되었는데 증가정도(增加程度)는 사질토양(砂質土壤)에서 현저(顯著)하였다. 그리고 우리나라 전국답토양(全國沓土壤) 평균치(平均値) 2.5%에 달(達)하기 위해서는 간척후(干拓後) 식질토양(埴質土壤)은 30년(年) 양질(壤質)과 사질토양(砂質土壤)은 약(約) 80년(年)이 경과(經過)되어야 할 것으로 예측(豫測)되어짐. 3. 토양중(土壤中) 가리활성도비(加里活性度比)는 토성(土性) 및 작토층위(作土層位)에 따라 상이(相異)했으나 일반답토양(一般沓土壤)의 평균(平均) 0.05~0.2 정도(程度)에 달(達)하기 위해서는 약(約) 50년(年)이 소요(消要)될 것으로 예측(豫測)되어짐. 4. $Na^{{+}{+}}$ion의 흡수율(吸收率), 흡착비등(吸着比等)은 간척년수(干拓年數)에 따라 현저(顯著)한 차이(差異)를 보였는데 특(特)히 사질토양(砂質土壤)에서 감소(減少)의 정도(程度)가 뚜렷하였음. 5. 간척년수(干拓年數)에 따른 점토함량변화(粘土含量變化)는 토층별(土層別)로 상이(相異)했는데 간척후(干拓後) 30년경(年頃)까지는 심토(深土)의 용탈(溶脫)이 현저(顯著)했으나 50년(年) 이후(以後)는 표토(表土)에서 용탈(溶脫)이 큰 경향(傾向)을 보였음.

  • PDF

요소유래(尿素由來) NO3-N 및 동반(同伴) 양(陽)이온의 토양(土壤)중 행동(行動) -II. 토양(土壤)과 용탈수(溶脫水)의 pH 변화(變化) 및 시용질소(施用窒素)의 행방(行方) (Behavior of NO3-N and Accompanying Cations Derived from Urea Under Upland Condition -II. Change in the pHs of Soil and Leachate and Fate of Applied Nitrogen)

  • 윤순강;류순호
    • 한국토양비료학회지
    • /
    • 제27권1호
    • /
    • pp.21-26
    • /
    • 1994
  • Lysimeter 조건(條件)에서 나지상태(裸地狀態)와 질소를 시용하고 목초(牧草)를 재배(栽培)한 상태에서 시험(試驗) 후 토양단면(土壤斷面)에 $NO_3-N$의 분포(分布)와 질소시용(窒素施用)에 따른 토양(土壤) 및 용탈수(溶脫水)의 pH 변화 그리고 시용된 질소의 행방(行方)에 대하여 조사(調査)한 결과는 아래와 같다. 나지(裸地)와 목초재배지(牧草栽培地)의 표토(表土)(0~20cm)에 $NO_3-N$농도는 4~13mg/kg으로 처리간 차이가 적었다. 심토(心土)(20~40cm)에서도 나지(裸地)와 질소시용량(窒素施用量) 0~14kg N/10a구(區)에서의 $NO_3-N$ 농도는 10mg/kg이하로 낮았으나, 21kg N/10a 처리구에서 부터 증가하기 시작하여 35kg N/10a구(區)에서는 83.8mg $NO_3-N/kg$에 달하였다. 표토(表土)에서 $NH_4-N$$NO_3-N$간(間)에는 $NH_4-N$ 농도가 증가할수록 $NO_3-N$도 증가하는 정(正)의 상관($r=0.49^*$)을 보였으나, 심토(心土)에서는 반대로 $NO_3-N$ 농도가 증가함에 따라 $NH_4-N$가 감소(減少)하는 부(負)의 상관(相關)($r=-0.69^*$)을 보였다. 심토(心土)에서는 $NO_3-N$과 교환성(交換性) 양(陽)이온이 증가하여 이들 간에 유의(有意)한 정(正)의 상관(相關)[$r=0.89^{***}(Ca)$, $0.98^{***}(Mg)$, $0.87^{***}(K)$]이 인정되었다. 심토(心土)의 pH는 $NO_3-N$ 농도가 높을수록 낮아졌으나(r=-0.74), $NH_4-N$ 농도가 높을수록 높아지는 경향(傾向)(r=0.59)을 보였다. 질소시용량(窒素施用量)이 많을수록 심토(心土)의 pH는 낮아졌으나 용탈수(溶脫水)의 pH는 높아졌고, 토양(土壤)과 용탈수(溶脫水)간의 pH 차이는 나지(裸地)와 35kg N/10a구(區)에서 각각 2.5, 3.1 단위(單位)로 매우 컸고 이러한 경향(傾向)은 질소시용량(窒素施用量)이 많을수록 현저(顯著)하였다. 질소시용량(窒素施用量)이 많을수록 목초에 의한 질소의 흡수율(吸收率)은 낮아졌으며 반면에 수확(收穫) 후 토양에 질소잔존율(窒素殘存率)과 가스에 의한 질소손실률(窒素損失率)은 증가하였다.

  • PDF