• Title/Summary/Keyword: 달 복제토

Search Result 4, Processing Time 0.018 seconds

Development of KAU Mechanical Lunar Simulants and Drop Test of Lunar Landing Gears (KAU 기계적 달 복제토 개발 및 달착륙선 착륙장치의 낙하시험)

  • Yoo, Seok-Ho;Kim, Hyun-Duk;Lim, Jae Hyuk;Park, Jung-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.12
    • /
    • pp.1037-1044
    • /
    • 2014
  • In this study, we designed a drop test system considering lunar surface environment and tested landing gear of experimental lunar lander. The lunar lander would be landed at soil place for soft landing. When the lunar lander touches down, the acceleration of the lander is largely affected by mechanical characteristics of the lunar soil. Accordingly, a drop test using lunar soil is needed to verify the performance of the lunar landing gear. Because the lunar soil is not available generally, we developed a lunar simulant KAUMLS(Korea Aerospace University Mechanical Luna Simulant) based on mechanical properties of the lunar soil of NASA's LUNA PROJECT. In addition, drop tests on steel plate and dry sand are performed to evaluate impact characteristics by the surface environment.

Optimization of Material Extruding Performance to Build a 3D Printed Habitat on the Moon and Mars (달, 화성 3D 프린팅 주거지 건설을 위한 재료 사출기능 최적화 연구)

  • Lee, Jin Young;Lee, Tai Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.2
    • /
    • pp.345-349
    • /
    • 2019
  • The National Aeronautics and Space Administration (NASA) has long been studying the essential elements of manned planetary exploration and has held several international challenges to encourage the research works related to it. One of them was the NASA Centennial Challenge Programs which started in 2015. Following the second in 2017, the third is currently going on in 2019. Participating "3D-Printed Habitat Challenge", one of the challenges in the second program, this research team designed and developed the 3D printer extruding module for the Lunar Simulant (Korea Hanyang Lunar Simulant-1; KOHLS-1) and the polymer. For optimizing the modul, a cylindrical specimen of ${\varnothing}150{\times}300mm^3$ volume and a specimen of $200{\times}100{\times}650mm^3$ volume were manufactured and their compressive and flexural strengths were tested. The findings can help automatize the space construction in the future.

Using In Situ Resources and 3D Printing for Space Exploration Habitat Construction (행성탐사를 위한 거주지 건설 연구 : 현지자원 활용과 3D 프린팅 기술을 중심으로)

  • Lee, Jin Young;Lee, Tai Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.3
    • /
    • pp.337-343
    • /
    • 2020
  • The third phase of NASA's 3D-Printed Habitat Challenge (part of a NASA's Centennial Challenges Program competition) required entrants to build a one-third-scale space exploration habitat (10 ㎡) using 3D-printing technology. This study addresses a proposed habitat (diameter: 3 m, height: 2 m) in accordance with the competition rules. The study focus is to find the most appropriate binder when KOHLS-1 was mixed for extruding and stacking as 3D printing feedstock using pellets, and to build a prototype structure as required by the competition. Unlike previous studies, this study was based around the binders and construction method, not around axis transfer velocity, flow rate, and heater temperature.