• Title/Summary/Keyword: 닫힌 형태 탄도해

Search Result 2, Processing Time 0.015 seconds

A Derivation of Sensitivity Equations of the Error Components to Analyze Performance in the Direct Fire Control System (직사화기 성능분석을 위한 오차요소별 민감도 식 유도)

  • Kim, Jaehun;Kim, Euiwhan;Lee, Jeongyeob;Kim, Gunkook
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.4 no.12
    • /
    • pp.399-408
    • /
    • 2015
  • In the direct Gun Fire Control System(GFCS), it is essential to analyze the impact of the specific error components on the hit probability to optimize the system design. For this purpose the sensitivity equations of these error components are conveniently used, but it is too difficult to get those equations for the complex system with too many system elements. Normally sensitivity analysis is performed using numerical and statistical methods for the ground combat system. This method requires much computation, and makes us difficult to estimate the sensitivity change of specific error component intuitionally for the changing operating conditions. In this paper we propose a set of sensitivity equations deriving from closed form solution of the ballistic differential equation for the bullet. They are handy equations with very little computations, easy to understand the physical meaning of the related system variables. Some simulation results are shown to demonstrate usefulness of our algorithm for the 30mm projectile.

A Computation Method for Time of Flight in the Anti-Aircraft Gun Fire Control System (대공화기 탄자비행시간 계산 기법)

  • Kim, Jaehun;Kim, Euiwhan;Yu, Sukjin;Kim, Sungho
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.4 no.11
    • /
    • pp.361-368
    • /
    • 2015
  • In AAGFCS the effective range is regarded as a range for the bullet's speed exceeding the speed of sound to damage the stationary target. Hence the real engagement range might be extended over the effective range for the approaching target since bullet's relative speed to the target increases depending on the approaching speed. However previous TOF equations have good computation accuracy within the effective range only, and they can not be used above that range due to their bad accuracy. We propose an accurate TOF computation method which can be used both within and above the effective range in real time. Some simulation results are shown to demonstrate usefulness of our algorithm for the 30mm projectile.