• Title/Summary/Keyword: 단층 프리폼 구조

Search Result 2, Processing Time 0.017 seconds

Finite Element Analysis for the Development of Node of Single Layered Freeform Structure (단층 프리폼 구조의 노드 개발을 위한 유한요소해석)

  • Oh, Jin-Tak;Lee, Kyoung-Ju;Ju, Young-Kyu;Woo, Woon-Taek;Kim, Sang-Dae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.11 no.3
    • /
    • pp.137-145
    • /
    • 2011
  • Due to architectural requirement, the attention of single layered freeform spatial structure is increasing nowadays. Because the node of single layered structure should resist the bending and axial forces simultaneously, it is necessary to develop a new proper type of node in detail. In this study, a new type of node for single layered freeform spatial structure was proposed. And the structural performance for the node was analytically evaluated using the commercial FEM software(ABACUS). As a result, a node prototype was selected and the proposed node showed good structural behaviors.

Structural Performances of an Axially-loaded Node in Single Layered Free Form Space Structures (단층 프리폼 대공간 구조물의 노드에 대한 축하중 구조성능 평가)

  • Lee, Kyoung-Ju;Oh, Jin-Tak;Hwang, Kyung-Ju;Ju, Young-Kyu;Kim, Sang-Dae
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.1
    • /
    • pp.59-71
    • /
    • 2012
  • Results of the analysis of the structural behavior of axially loaded nodes in freeform structure were not fully understood due to certain difficulties, including the application of various welding and bolting types. In this study, a node of single layered freeform structure was tested to determine its structural behavior when subjected to axial loads. The tests were classified into node ball tests to evaluate the center of the node subjected to cyclic and monotonic loading. The node part tests were also conducted to evaluate the whole node subjected to monotonic loading. The test showed that the node ball is safe with the tensile force, but the node ball needs to increase its strength with the node loaded compressive force due to the additional bending moment of the node ball's asymmetric form.