• Title/Summary/Keyword: 단층 운동

Search Result 286, Processing Time 0.029 seconds

Relation of Intensity, Fault Plane Solutions and Fault of the January 20, 2007 Odaesan Earthquake (ML=4.8) (2007년 1월 20일 오대산 지진(ML=4.8)의 진도, 단층면해 및 단층과의 관계)

  • Kyung, Jai-Bok;Huh, Seo-Yun;Do, Ji-Yong;Cho, Deok-Rae
    • Journal of the Korean earth science society
    • /
    • v.28 no.2
    • /
    • pp.202-213
    • /
    • 2007
  • The Odaesan earthquake $(M_L=4.8)$ occurred near Mt. Odae, Jinbu-Myon, Pyongchang-Gun, Kangwon Province on January 20, 2007. It has a shallow focal depth about 10 km. Its felt area covers most of the southern peninsula except some southern and western inland area. The maximum MM intensity was VI in the areas including Jinbu, Doam, Kangreung, Jumunjin, and Pyongchang. In these areas, there was a very strong shaking that caused several cracks on the walls of buildings and houses, slates falling off the roof, tiles being off the wall, things falling off the desk, and rock falling from the mountains. In order to get fault plane solutions, grid searches were performed by fitting distributions of P-wave first-motion polarities and SH/P amplitude ratios for each event. The results showed that the main shock represented right-lateral strike-slip sense and two aftershocks, reverse sense. It seems that the seismogenic fault may be the NNE-SSW trending Weoljeongsa fault near the epicenter based on the distribution of epicenters (foreshock, main shock, and aftershocks), damage area, and fault plane solution. The distribution of the epicenters indicates that the length of the subsurface rupture is estimated to be about 2 km.

Earthquake Mechanism in and around the Korean Peninsula (한반도 및 인근의 지진 메카니즘 특성)

  • Jun, Myung-Soon
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1-5
    • /
    • 2008
  • In and around the Korean Peninsula, 9 intraplate earthquake mechanisms since 1936 were analyzed to understand the regional stress orientation and tectonics. These earthquakes are largest ones in this century and may represent the characteristics of earthquake in this region. Focal mechanism of these earthquakes show predominant strike-slip faulting with small amount of thrust components. The average P-axis is almost horizontal ENE-WSW. This indicate that not only the subducting Pacific Plate but also the indenting Indian Plate controls earthquake mechanism in the far east of the Eurasian Plate.

  • PDF

Geometry and Kinematics of the Northern Part of Yeongdeok Fault (영덕단층 북부의 기하와 운동학적 특성)

  • Gwangyeon Kim;Sangmin Ha;Seongjun Lee;Boseong Lim;Min-Cheol Kim;Moon Son
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.1
    • /
    • pp.55-72
    • /
    • 2023
  • This study aims to identify the fault zone architecture and geometric and kinematic characteristics of the Yeongdeok Fault, based on the geometry and kinematic data of various structural elements obtained by detailed field survey and anisotropy of magnetic susceptibility (AMS) of the fault rocks. The Yeongdeok Fault extends from Opo-ri, Ganggu-myeon, Yeongdeok-gun to Gilgok-ri, Maehwa-myeon and Bangyul-ri, Giseong-myeon, Uljin-gun, and cuts various rock types from the Paleo-proterozoic to the Mesozoic with a range of 4.6-5.0 km (4.77 km in average) of right-lateral offset or forms the rock boundaries. The fault is divided into four segments based on its geometric features and shows N-S to NNW strikes and dips of an angle of ≥ 54° to the east at most outcrops, even though the outcrops showing the westward dipping (a range of 54°-82°) of fault surface increase as it goes north. The Yeongdeok Fault shows the difference in the fault zone architecture and in the fault core width ranging from 0.3 to 15 m depending on the bedrock type, which is interpreted as due to differences in the physical properties of bedrock such as ductility, mineral composition, particle size, and anisotropy. Combining the results of paleostress reconstruction and AMS in this and previous studies, the Yeongdeok Fault experienced (1) sinistral strike-slip under NW-SE maximum horizontal principle stress (σHmax) and NE-SW minimum horizontal principle stress (σHmin) in the late Cretaceous to early Cenozoic, and then (2) dextral strike-slip under NE-SW maximum horizontal principle stress (σHmax) and NW-SE minimum horizontal principle stress (σHmin) in the Paleogene. It is interpreted that the deformation caused by the Paleogene dextral strike-slip movement was the most dominant, and the crustal deformation was insignificant thereafter.

Shake Table Response and Analysis of RC Bridge Piers with Lap-Spliced Steel under NFGM (주철근 겹침이음된 RC교각의 근단층지반운동에 대한 진동대 응답과 분석)

  • Chung, Young-Soo;Park, Chang-Young;Hong, Hyun-Ki;Park, Ji-Ho;Shim, Chang-Su
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.4
    • /
    • pp.451-458
    • /
    • 2008
  • The near-fault ground motion (NFGM) is characterized by a single long period velocity pulse of large magnitude. NFGM's have been observed in recent strong earthquakes, Izmit Turkey (1999), Kobe Japan (1995), Northridge USA (1994), etc. These strong earthquakes have caused considerable damage to infrastructures because the epicenter was close to the urban area, called as NFGM. Extensive research for the near-fault ground motion (NFGM) have been carried out in strong seismic region, but limited research have been done for NFGM in low or moderate seismic regions because of very few records. The purpose of this study is to investigate and analyze the effect of near-fault ground motions on reinforced concrete (RC) bridge piers with lap-spliced longitudinal reinforcing steels. The seismic performance of four RC bridge piers under near-fault ground motions was investigated on the shake table. In addition, a RC bridge pier is subjected to pseudo-dynamic loadings. Test results showed that large residual displacements were observed in RC bridge piers under NFGM. RC specimens on the shake table failed at relatively low displacement ductility, compared with the displacement ductility of RC bridge pier subjected to pseudo-dynamic loadings.

The First Discovery of Quaternary Fault in the Western Part of the South Yangsan Fault - Sinwoo Site (양산단층 남부 이서 지역에서 최초로 발견된 제4기 단층 - 신우지점)

  • Choi, Sung-Ja;Ghim, Yong Sik;Cheon, Youngbeom;Ko, Kyoungtae
    • Economic and Environmental Geology
    • /
    • v.52 no.3
    • /
    • pp.251-258
    • /
    • 2019
  • During the detailed geological survey around the southern Yangsan Fault, we newly found a Quaternary fault outcrop, which cuts unconsolidated sediments. The fault named the Sinwoo site, located in the Sinwoo pasture, Miho-ri, Duseo-myeon, Ulsan metropolitan city, is the first discovered Quaternary fault near the western part of the south Yangsan Fault. In this study, we provide information on characteristics of fault geometry and unconsolidated sediment at Sinwoo site based on the analysis data of topography, drainage, and lineament around the study site. The fault site is situated at pediment slope, but fan-shaped middle terrace, as well as thick sediment exposed at low terrace, indicates that the unconsolidated sediments have been deposited in the alluvial fan environment. The drainage develops to the third-order drainage system, and the first and the second drainage system meet at right angles to each other and form a radial drainage pattern. In addition, the NE-SW direction lineaments can be identified on the basis of the curvature of the river and the step of the topographic relief, running over the Sinwoo site. The fault of $N30-35^{\circ}E/79-82^{\circ}SE$ shows ~ 5.8 m apparent vertical offset and dominantly reverse-slip sense based on slickenline, rotation of pebbles, and drag folding at footwall. However, some discontinuous sediments observed in the footwall are interpreted as fissure-filling materials due to the strike-slip movement. Now, we are under multidisciplinary investigations of additional field survey and age dating in order to determine the evolution of Sinwoo site fault during the Quaternary.

Quaternary Fault Activity of the Yangsan Fault Zone in the Samnam-myeon, Ulju-gun, Ulsan, Korea (울산광역시 울주군 삼남면 일대에 발달한 양산단층대의 제4기 단층운동)

  • Yang, Joo-Seok;Lee, Hee-Kwon
    • Economic and Environmental Geology
    • /
    • v.47 no.1
    • /
    • pp.17-27
    • /
    • 2014
  • We investigated space-time patterns of Quaternary fault activity of the Yangsan fault zone using ESR ages in the Samnam-myeon region, Ulsan, Korea. Some of fault gouge zones consist of well-defined bands which added to the older gouge band, indicative of reactivation. During addition of new bands, the older gouge band was inactive, which represents the type I faulting mode. ESR analyses of each band of the gouge zone allow us to construct history of fault movement. The entire fault gouge zones were reactivated by type III faulting mode giving us ESR ages of the lastest reactivation. ESR dates show temporal clustering into active and inactive periods analogous to historic and paleoseismic fault activities. ESR ages and dates of fault movements indicate migration of fault activities along the Yangsan Fault Zone. Segments of the Quaternary faults in the study area are branched in the south of Sangcheon site. The earliest record of activity in segmented faults is recorded from the western segment to the northern segment. Before 750~850 ka ago, the fault gouge zone from the western segment to the northern segment were active. At 750~850 ka ago, the fault gouge zone from the eastern segment to the northern segment were active. During 630~660 ka and 480~540 ka only the northern segment was active. After 340 ka ago, the fault gouge zone from the western segment to the northern segment were active again.

Geomorphological Development and Fault Activity of the Central-Southern Yangsan Fault (I): Developmental Characteristics and Distribution of the Quaternary Landforms (양산단층 중남부 구간의 지형 발달과 단층 운동 (I): 제4기 지형의 발달 특성 및 분포)

  • Hong, Yeong-Min;Oh, Jeong-Sik;Hong, Seong-Chan;Shin, Jae-Ryul
    • Journal of The Geomorphological Association of Korea
    • /
    • v.28 no.1
    • /
    • pp.67-81
    • /
    • 2021
  • Geomorphological development and distribution at the macro scale provide a clue to the geotectonic characteristics that have affected the geomorphological system. This is because the developmental characteristics and distribution of the landform at the macro scale remain spatial characteristics due to tectonic processes, such as fault activity. From the perspective of tectonic geomorphology, this study identified the developmental characteristics and distribution of the Quaternary landforms in central-southern Yangsan fault and discussed its relevance to fault activity. In this paper, we presented examples and results of morphotectonic analysis of the Yangsan fault, and will present the results of age dating, stratigraphic relationship of the Quaternary landforms, and calculation of cumulative slip rate in the next paper.

Interpretation of Paleostress using Geological Structures observed in the Eastern Part of the Ilgwang Fault (일광단층 동편에서 관찰되는 지질구조를 이용한 고응력사 해석)

  • Kim, Taehyung;Jeong, Su-Ho;Lee, Jinhyun;Naik, Sambit Prasanajit;Yang, Wondong;Ji, Do Hyung;Kim, Young-Seog
    • The Journal of Engineering Geology
    • /
    • v.28 no.4
    • /
    • pp.645-660
    • /
    • 2018
  • In the southeastern part of the Korean Peninsula, huge fault valleys, including the Yangsan and Ulsan faults, are recognized. These NNE-SSW trending lineaments are called as a whole Yangsan Fault System. However, this fault system is relatively poorly studied except the Yangsan and Ulsan faults. This study deduced the paleostress history based on the mutual cross-cutting relationships between geologic structures developed in the granite body near the Ilgwang fault, which is compared with previous studies. In the study area, four lineaments parallel to the Ilgwang fault are recognized, and three of them show evidences of faulting. In each lineament, both slip-senses of left-lateral and right-lateral are recognized. It indicates that these faults consistently underwent multiple deformations of inversion along the faults. The inferred paleostress directions based on the mutual cross-cutting relationships of the geological structures are as follows: 1) Tensile fractures developed in the late Cretaceous under the ENE-WSW direction of compressive stress, 2) NW-SE trending maximum horizontal principal stress generated conjugate strike-slip faults, and 3) selective reactivations of some structures were derived under the compression by the NE-SW trending principal stress.

Reactivated Timings of Yangsan Fault in the Northern Pohang Area, Korea (포항 북부지역 양산단층의 재활동 연대)

  • Sim, Ho;Song, Yungoo;Son, Moon;Park, Changyun;Choi, Woohyun;Khulganakhuu, Chuluunbaatar
    • Economic and Environmental Geology
    • /
    • v.50 no.2
    • /
    • pp.97-104
    • /
    • 2017
  • Here we present the timings of reactivated events from a fault in the northern Pohang area, which should be located at the northern-end of Yangsan fault line, the major fault in the southeastern Korean Peninsula. Recently developed illite-age-analysis (IAA) approach was employed for determining the fault-activated timing, combined with illite-polytype quantification using the optimized full-pattern-fitting (FPF) method, and K-Ar age-dating for each size fraction($<0.1{\mu}m$, $0.1-0.4{\mu}m$, and $0.4-1.0{\mu}m$) of 4 fault clay samples. Two chronological records of brittle fault-activation events were recognized at $19.6{\pm}1.86Ma$ and $26.1{\pm}2.55-27.9{\pm}3.46Ma$. The ages are much younger than those of fault clays from Sangcheon-ri area (41.5~43.5 and 50.7 Ma), the southern part of Yangsan fault line, and are close to the timing of East Sea-opening event. Further chronological analysis for additional sites of the Yangsan fault should be needed to reveal the time-scheme of the tectonic events and their spatial distributions along the fault line.

On the Latest Tectonic Environment Around Northern Part of the Yangsan Fault, Korea (양산단층 북부 일대의 최후기 지구조환경에 대해)

  • Ryoo, Chung-Ryul;Kang, Ji-Hoon;Kang, Hee-Cheol
    • The Journal of the Petrological Society of Korea
    • /
    • v.27 no.3
    • /
    • pp.173-184
    • /
    • 2018
  • Geologic structures related to the latest event in the evolution around Gyeongsang Basin are mainly associated with the Yangsan Fault. In particular, the structures in the northern part of the Yangsan Fault are mainly observed in the region between Bogyeongsa Temple and Danguri. Such structures are also clustered in the vicinity of the Yangsan Fault, exhibiting similar geometric and kinematic patterns. In general, N-S and NE-SW trending fractures and tectonogeomorphic lineament are mainly eastward dipping reverse faults, such that the blocks in the east of the structures moved west or northwest. The reverse faults are segmented by NW trending fractures that accommodate strike-slip movements. The reverse faults and geomorphotectonic lineaments related to the latest event of deformation in the northern part of the Yangsan Fault show a westward convex patterns. We infer that these structures were initially normal faults that formed during a NW-SE extensional environment and were later reactivated during an E-W compressional one. Such a deformation pattern is also well developed around Pohang-Heunghae area based on the tectonogeomorphic analysis, which appears to be closely related to the Pohang Earthquake (15 Nov. 2017), and its development of the surface rupture and highly damaged zones.